

Via Ettore Majorana, 4 20054 NOVA MILANESE - MI

Tel. +39 0362-492-1 Fax +39 0362-44337

SPECIFICHE **IOG4AX-HD100-P ED 2.0**

Modulo di Interfaccia GALIL

La scheda IOG4AX-HD ha lo scopo di permettere all'utilizzatore di interfacciarsi facilmente con il connettore ad alta densità proveniente dal controllo Galil evitando cablaggi costosi in termini di tempo e con alta percentuale di errori.

I segnali provenienti dal controllo (connettore ad alta densità 100 poli) vengono distribuiti su più connettori con una funzione specifica: segnali encoder, controllo azionamenti ,I/O ausiliari disaccoppiati etc.

DESCRIZIONE CONNETTORI E RELATIVI SEGNALI

CONNETTORE INTERFACCIA GALIL - J1

Il connettore J1 della Galil andrà collegato al connettore J1 della IOG attraverso il connettore 100 pin HD.

GALIL	IOG	TIPO
J1	J1	100 poli alta densità

CONNETTORI ALIMENTAZIONE

ALIMENTAZIONE PRINCIPALE - CONNETTORE J2

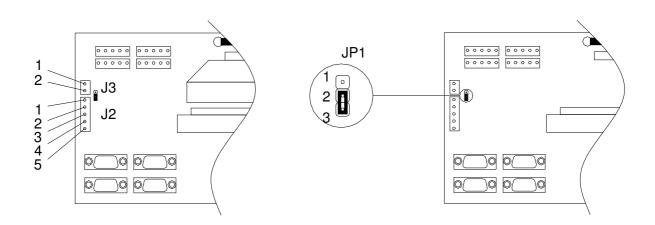
La IOG va alimentata a 24 VDC dal connettore J2. All'interno è presente un DC/DC converter per l'alimentazione degli optoisolatori e degli encoder.

	Connettore J2									
Pin	Nome	Segnale	Min	Max						
1	V24	Alimentazione +24	15 volt	30 volt						
2	GND24	GROUND	0 volt							
3	Reset	Reset per scheda GALIL	0 volt							
4	Abort	Abort programma GALIL	15 volt	30 volt						
5	TERRA	Collegamento schermi	Nodo di terra							

Il morsetto di terra non deve essere ponticellato col morsetto GROUND. La terra è connessa con tutti i gusci metallici dei connettori a vaschetta e del connettore a 100 poli proveniente dalla GALIL.

<u> ALIMENTAZIONE AUSILIARIA - CONNETTORE J3</u>

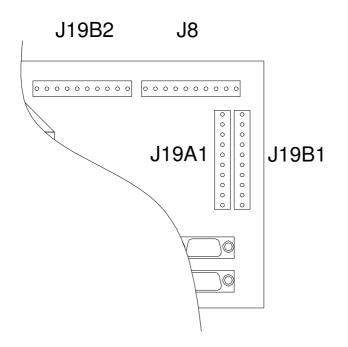
Il connettore J3 permette di separare l'alimentazione della scheda IOG (DC/DC converter) dall'alimentazione delle uscite.


	Connettore J3								
Pin	Nome	Segnale	Min	Max					
1	GNDAUX	GROUND	0 volt						
2	VAUX	alimentazione DC-DC converter	14	30 volt					

Con **JP1** in posizione **2-3** (*Default*):

le alimentazioni sono comuni per il DC-DC converter e per le uscite.

Con **JP1** in posizione **1-2**:


l'alimentazione delle uscite diventa indipendente dal DC/DC converter. Si possono così utilizzare due alimentazioni indipendenti per la scheda (da J3) e per le uscite (da J2). Questo permette in caso di allarme di togliere tensione alle uscite senza bloccare la scheda: gli encoders, in particolare, continueranno a funzionare.

E' utile alimentare il DC/DC converter della IOG con alimentazione ausiliaria (o separata) qualora si utilizzino encoders ad alta risoluzione o cavi di connessione encoders molto lunghi. Si consiglia di effettuare la chiusura dei pins con jumper a saldare.

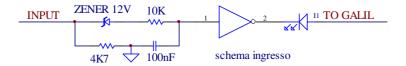
CONNETTORI INTERFACCIA UTENTE

La scheda IOG-4AX-HD100-P fornisce l'interfacciamento a schede GALIL fino a quattro assi; per schede a più di quattro assi vanno previste due IOG. In questo caso chiameremo la prima IOG "scheda master" (assi A-D), la seconda IOG "scheda slave" (assi E-H).

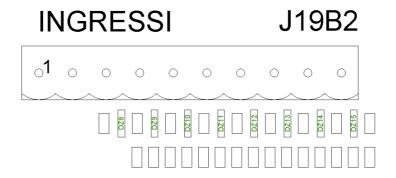
J19B2 ingressi digitali

J19B1 ingressi digitali aux su IOG

slave (DMC1780 e DMC-1880)


J19A1 ingressi analogici

J8 uscite digitali

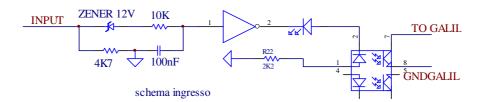

<u>INGRESSI DIGITALI GENERAL PURPOSE - CONNETTORE J19B2</u>

	CONNETTORE J19B2								
	scheda	master	scheda slave	(schede 8 assi)	valore				
Pin	Nome	Segnale	Nome	Segnale	Min	Max			
1	IN1	ingresso	IN9	ingresso	14.5 volt	40 volt			
2	IN2	ingresso	IN10	ingresso	14.5 volt	40 volt			
3	IN3	ingresso	IN11	ingresso	14.5 volt	40 volt			
4	IN4	ingresso	IN12	ingresso	14.5 volt	40 volt			
5	GND	comune	GND	comune	-	-			
6	IN5	ingresso	IN13	ingresso	14.5 volt	40 volt			
7	IN6	ingresso	IN14	ingresso	14.5 volt	40 volt			
8	IN7	ingresso	IN15	ingresso	14.5 volt	40 volt			
9	IN8	ingresso	IN16	ingresso	14.5 volt	40 volt			
10	+24	+24 out	+24	+24 out	= alimei	ntazione			

Lo schema elettrico degli ingressi è il seguente:

E' possibile modificare il livello di soglia minima (da 14.5 a 2.5 volt) sostituendo lo zener da 12 volt in serie al relativo ingresso con un jumper a saldare (cortocircuito). Per questo si veda lo schema e la tabella seguenti:

Tabella per modifica soglia minima:


MASTER	IN1	IN2	IN3	IN4	IN5	IN6	IN7	IN8
SLAVE	IN9	IN10	IN11	IN12	IN13	IN14	IN15	IN16
ZENER	DZ8	DZ9	DZ10	DZ11	DZ12	DZ13	DZ14	DZ15

<u>INGRESSI DIGITALI AUX - CONNETTORE J19B1</u>

Nel caso delle schede DMC-1780 e DMC-1880 (8 assi), sono disponibili ulteriori 8 ingressi digitali ausiliari accessibili dal connettore J19B1.

CON	NETTORE .	J19B1 (Ingre	essi aux solo per	DMC-1780 e DM	C-1880 su IOG '	'slave")
	scheda	master	scheda slave	e (schede 8 assi)	val	ore
Pin	Nome	Segnale	Nome	Segnale	Min	Мах
1	N.A.	N.A.	IN17	ingresso	14.5 volt	40 volt
2	N.A.	N.A.	IN18	ingresso	14.5 volt	40 volt
3	N.A.	N.A.	IN19	ingresso	14.5 volt	40 volt
4	N.A.	N.A.	IN20	ingresso	14.5 volt	40 volt
5	N.A.	N.A.	GND	comune	-	-
6	N.A.	N.A.	IN21	ingresso	14.5 volt	40 volt
7	N.A.	N.A.	IN22	ingresso	14.5 volt	40 volt
8	N.A.	N.A.	IN23	ingresso	14.5 volt	40 volt
9	N.A.	N.A.	IN24	ingresso	14.5 volt	40 volt
10	N.A.	N.A.	+24	+24 out	= alime	ntazione

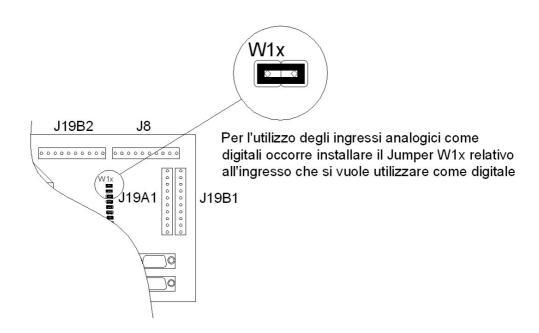
Tali ingressi aux sono optoisolati sulla scheda IOG, pertanto lo schema elettrico si modifica come segue:

Anche in questo caso è possibile abbassare la soglia minima (da 14.5 a 2.5 volt) sostituendo lo zener da 12 volt in serie al relativo ingresso con un jumper a saldare (cortocircuito) secondo lo schema a lato.

INGRESSI ANALOGICI AUSILIARI ° 1 ° 1 | D221 | D222 | D223 | D224 | D225 | D225 | D225 | D225 | D226 | 0 0 0 0 0 0 0 0 DZ28 DZ27 DZ27 DZ28 0 0 0 J19A1 0

Tabella per conversione TTL:

SLAVE	IN17	IN18	IN19	IN20	IN21	IN22	IN23	IN24
ZENER	DZ21	DZ2	DZ23	DZ24	DZ25	DZ26	DZ27	DZ28


INGRESSI ANALOGICI - CONNETTORE J19A1

	CONNETTORE J19A1									
	scheda	master	scheda slave	c (schede 8 assi)	valore					
Pin	Nome	Segnale	Nome	Segnale	Min	Мах				
1	AIN1	ingresso	N.A.	N.A.	-10 volt	+10 volt				
2	AIN2	ingresso	N.A.	N.A.	-10 volt	+10 volt				
3	AIN3	ingresso	N.A.	N.A.	-10 volt	+10 volt				
4	AIN4	ingresso	N.A.	N.A.	-10 volt	+10 volt				
5	AIN5	ingresso	N.A.	N.A.	-10 volt	+10 volt				
6	AIN6	ingresso	N.A.	N.A.	-10 volt	+10 volt				
7	AIN7	ingresso	N.A.	N.A.	-10 volt	+10 volt				
8	AIN8	ingresso	N.A.	N.A.	-10 volt	+10 volt				
9	+12V	galil	N.A.	N.A.	Da scheda GALIL					
10	-12V	galil	N.A.	N.A.	Da scheda GALIL					

Gli ingressi del connettore J19A1 sono ingressi analogici e sono direttamente collegati con la scheda GALIL senza nessun componente intermedio.

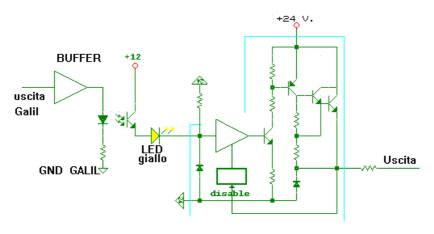
Utilizzo degli ingressi analogici come ingressi ausiliari

La scheda IOG (master) consente di utilizzare, se ce ne fosse la necessità, gli ingressi analogici come ingressi digitali a tutti gli effetti (24 volt). Per fare questo è <u>necessario</u> installare i jumpers W1x (pull-up verso VCCM) e collegare gli ingressi sul connettore J19B1, normalmente dedicato alla parte slave della GALIL a 8 assi (ingressi ausiliari). In questo caso gli ingressi andranno comunque letti come analogici.

Se ad esempio volessi utilizzare l'ingresso analogico 1 come ingresso digitale, basterà inserire il jumper W11 e collegare l'ingresso digitale sul pin 1 di J19A1. Gli altri ingressi analogici potranno essere utilizzati come tali.

Con ingresso basso (0 V), leggerò 5 V sull'ingresso analogico. Con ingresso alto (+24 V), leggerò 0 V sull'ingresso analogico.

Esiste inoltre la possibilità di utilizzare questi ingressi in forma mista analogica e digitale. In tal caso occorre prevedere connettori con uscita verticale in quanto non si possono impiegare contemporaneamente i connettori J19B1 e J19A1 per motivi di ingombro.

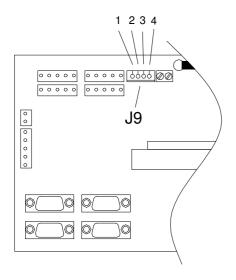

<u>USCITE DIGITALI GENERAL PURPOSE - CONNETTORE J8</u>

	CONNETTORE J8										
		scheda m	aster	sched	da slave (s	schede 8 assi)	va	lore			
Pin	Nome	Segnale	Tipo	Nome	Segnale	Tensione	Tipo	Corrente			
1	OUT1	uscita	Open emitter	OUT9	uscita	Open emitter	24 volt	0,2 A			
2	OUT2	uscita	Open emitter	OUT10	uscita	Open emitter	24 volt	0,2 A			
3	OUT3	uscita	Open emitter	OUT11	uscita	Open emitter	24 volt	0,2 A			
4	OUT4	uscita	Open emitter	OUT12	uscita	Open emitter	24 volt	0,2 A			
5	OUT5	uscita	Open emitter	OUT13	uscita	Open emitter	24 volt	0,2 A			
6	OUT6	uscita	Open emitter	OUT14	uscita	Open emitter	24 volt	0,2 A			
7	OUT7	uscita	Open emitter	OUT15	uscita	Open emitter	24 volt	0,2 A			
8	OUT8	uscita	Open emitter	OUT16	uscita	Open emitter	24 volt	0,2 A			
9	+24V +24 out		+24V	+24 out		Alime	ntazione				
10	GND24	comune		GND24	comune		0	0			

Tutte le uscite sono disaccoppiate dalla Galil e possono pilotare un carico max. di 0.4 ampere (contemporaneamente solo 4 uscite) o 0.20 ampere (su tutte le uscite contemporaneamente).

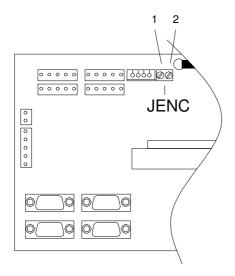
Le uscite sono source driver (PNP): il valore della tensione sarà uguale a quello dell'alimentazione.

N.B. TUTTE LE USCITE SONO PROTETTE CONTRO I CORTO-CIRCUITI E SOVRACCARICHI, NON CONTRO LE SOVRATENSIONI. QUALORA SI DEBBA PILOTARE UN CARICO INDUTTIVO (ES. UN RELE'), E BENE ACCERTARSI CHE QUESTO SIA PROVVISTO DI DIODO DI RECUPERO.



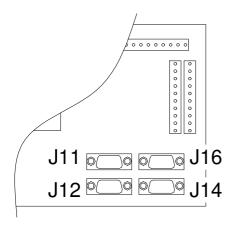
Tensione di uscita= Vsupply - 0.6 volt

Corrente di uscita = 250 milliampere su tutte le ucite


= 400 milliampere su max. 4 uscite

<u>USCITA DI COMPARAZIONE E ERRORE (Output Compare e Error Output) - CONNETTORE J9</u>

PIN	SEGNALE	DESCRIZIONE
1	CMP	segnale di COMP della Galil tipo TTL
2	ERR	Segnale di ERR della Galil
3	GND	ground Galil
4	+5 volt	alimentazione proveniente da Galil

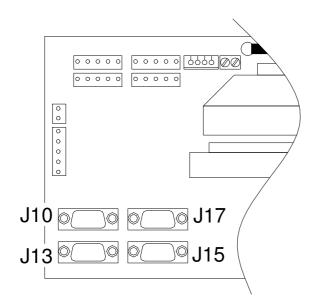

USCITA DI ALIMENTAZIONE PER GLI ENCODER AUSILIARI - CONNETTORE JENC

PIN	SEGNALE	DESCRIZIONE
1	+5 volt	alimentazione proveniente dalla IOG
2	GND	Ground IOG

<u>INGRESSI ENCODER - CONNETTORI J11, J12, J16, J14</u>

Ogni canale encoder è accessibile separatamente attraverso connettori DB9 femmina secondo lo schema seguente:

Connettore	Encoder	
J11	Asse X	
J12	Asse Y	
J16	Asse Z	
J14	Asse W	


Pin-Out CONNETTORI J11, J12, J16, J14 ingressi encoder

PIN	SEGNALE	DESCRIZIONE	
1	CHA	canale A encoder	
2	СНВ	canale B encoder	
3	CHI	canale indice di zero	
4	SHLD	schermo	
5	+5 V.	alimentazione encoder	
6	CHA\	canale A negato	
7	CHB\	canale B negato	
8	CHI\	canale indice zero negato	
9	GND5	riferimento aliment.encoder	

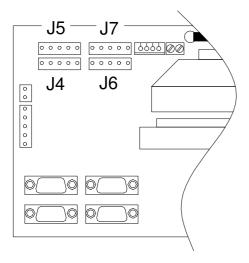
I segnali complementari sono caricati da una R=150 Ω .

<u>USCITE DI COMANDO - CONNETTORI J10, J13, J17, J15</u>

Le uscite di comando sono separate per ciascun asse e accessibili attraverso connettori DB9 maschio secondo lo schema seguente:

Connettore	Controllo azionamento	
J10	Asse X	
J13	Asse Y	
J17	Asse Z	
J15	Asse W	

Pin-Out CONNETTORI J10, J13, J17, J15 comando assi


PIN	SEGNALE	DESCRIZIONE	
1	REF	Segnale di comando (±10V)	
2	ENA	abilitazione azionamento	
3	IN1-2-3-4	general input (fault)	
4	SHLD	schermo	
5	STEP	step (event.motore a passo)	
6	GNDM	ground del riferimento REF Galil	
7	GND	ground della scheda IOGS	
8	+24		
9	DIR	direzione (motore a passo)	

I segnali ENA STEP DIR sono disaccoppiati dalla Galil e possono pilotare un carico massimo di 0.25 ampere; sono inoltre PROTETTI E POSSONO ESSERE A 24V o 5V (PNP) selezionando un ponticello.

I segnali IN1, IN2, IN3, IN4 sono gli stessi ingressi IN1, IN2, IN3, IN4 presenti su J19B2.

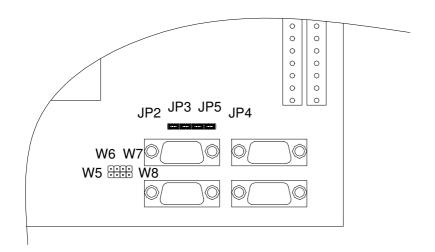
INGRESSI DI FINE-CORSA e HOME - CONNETTORI J4, J5, J6, J7

I segnali di fine-corsa e home sono separati su quattro connettori, uno per ogni asse.

Connettore	Ingressi FC e H A	
J4	Asse X	
J5	Asse Y	
Ј6	Asse Z	
J7	Asse W	

Pin-Out CONNETTORI J4, J5, J6, J7 ingressi fine-corsa e home

PIN	SEGNALE	DESCRIZIONE	
1	НМ	HOME signal input	
2	FL	FORWARD limit switch	
3	RL	REVERSE limit switch	
4	GND24	refernce 24 volt	
5	+24 V.	24 V. out per switch	

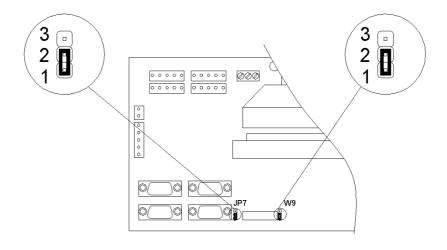

TUTTI GLI INGRESSI DEI FINE CORSA HANNO UN RANGE DA 14.5 V. A 30 V.

Il circuito di ingresso è riportato a Pag. 20.

JUMPERS

JUMPERS JP2,JP3,JP4,JP5

Determinano l'alimentazione encoder degli assi X,Y,Z e W rispettivamente.


Asse X	JP2	W5
Asse Y	JP3	W6
Asse Z	JP5	W7
Asse W	JP4	W8

<u>Jumper chiusi (default):</u> l'alimentazione degli encoders avviene attraverso il DC/DC converter a bordo della IOG.

<u>Jumper aperti:</u> configurazione da adottare nel caso in cui l'alimentazione degli encoder provenga dall'esterno (ad esempio se si utilizza un moltiplicatore di conteggi esterno che richiede una alimentazione separata). In questa situazione (jumper JP2, 3, 5 o 4 aperto), è necessario chiudere il rispettivo jumper W (W5, 6, 7 o 8) per evitare che la IOG blocchi l'alimentazione degli azionamenti (vedi par. **JUMPERS W5, W6, W7, W8**).

JUMPERS JP7 - W9

Determinano il valore di tensione dei segnali di ABILITAZIONE azionamenti, STEP e DIREZIONE.

JP7 ⇒ <u>AZIONAMENTI X,Y:</u>

- INSERITO IN POSIZIONE 1-2 (configurazione standard come in figura) le uscite sono a 24 volts;
- INSERITO IN POSIZIONE 2-3 le uscite sono a 5 volt.

Per avere un'uscita TTL occorre utilizzare una resistenza di pull down di circa 10 Kohm.

W9 ⇒ <u>AZIONAMENTI Z,W:</u>

- INSERITO IN POSIZIONE 1-2 (configurazione standard come in figura) le uscite sono a 24 volts;
- INSERITO IN POSIZIONE 2-3 le uscite sono TTL.

Per avere un'uscita TTL occorre utilizzare una resistenza di pull down di circa 10 Kohm.

JUMPER JP8

Settato su 1-2 l'alimentazione degli encoders viene effettuata tramite DC/DC converter. Settato su 2-3 è possibile (anche se sconsigliabile) alimentare gli encoders tramite l'alimentazione proveniente dalla Galil.

JUMPERS W5, W6, W7, W8

Servono per il controllo del corretto funzionamento degli encoders.

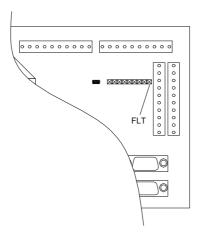
<u>Chiusi:</u> Nel caso siano chiusi un enable asse proveniente dal programma GALIL passerà agli azionamenti direttamente.

<u>Aperti (Default)</u>: Nel caso siano aperti un mal funzionamento del convertitore DC/DC, che genera il +5 volt per gli encoder, disabiliterà gli azionamenti a prescindere dal comando GALIL.

LED DI SEGNALAZIONE

LED DI ALIMENTAZIONE

LD1 +24-terra rosso = se acceso segnala la presenza della connessione del seganle di terra*

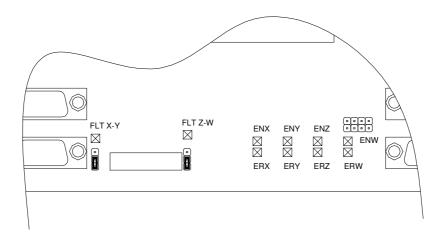

LD2 verde = se acceso segnala la presenza dell'alimentazione 5 volt

LD3 giallo = se acceso segnala la presenza dell'alimentazione +12 volt interno.

FAULT USCITE (FLT)

N.B. Ogni uscita è protetta: in caso di corto circuito o sovraccarico un led rosso segnalerà l'anomalia. Un pulsante di reset (o lo spegnimento del sistema) permette il reset delle uscite.

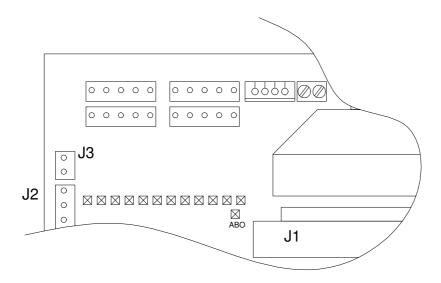
Si accende qualora sia presente un corto circuito o sovraccarico su una qualsiasi selle uscite.


Il FAULT disabilita tutte le uscite, i leds gialli relativi alle uscite abilitate rimarranno però accesi permettendo con facilità di individuare l'uscita in corto circuito.

X-Y FAULT (FLT X-Y) / Z-W FAULT (FLT Z-W)

FLT X-Y: Si accende qualora sia presente un corto circuito o sovraccarico su una qualunque uscita dei connettori J10 e J13 [segnali: ENX, STEPX, DIRX, ENY,STEPY,DIRY].

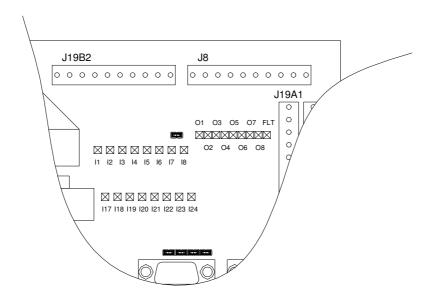
^{*} Permette di capire se il collegamento di terra per gli schermi è stato collegato e se l'alimentazione della scheda (+24) è funzionante


FLT Z-W: Si accende qualora sia presente un corto circuito o sovraccarico su una qualunque uscita dei connettori J17 e J15 [segnali: ENZ, STEPZ, DIRZ, ENW,STEPW,DIRW].

IL reset dei FAULT si ottiene utilizzando il pulsante presente sulla IOG ovvero spegnendo l'alimentazione della IOG.

<u>LED ABORT - verde (ABO)</u>

Si accende in presenza di un segnale alto (abort) sul connettore J2 pin 6. Si trova sul lato sinistro del connettore J1.



LEDS USCITE - gialli (01-08)

Si accendono rispettivamente in funzione delle uscite abilitate. Contribuiscono anche alla visualizzazione di un'anomalia (corto circuito) sulle uscite in congiunzione al led rosso USCITE-FAULT.

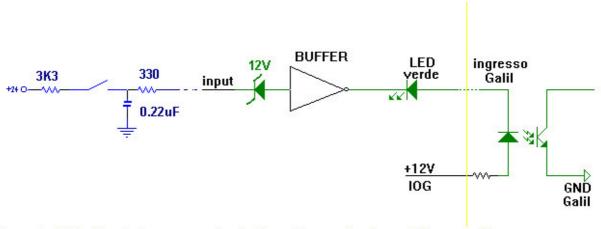
LEDS INGRESSI - verdi (I1-I8)

Indicano lo stato degli ingressi; SONO IN SERIE AL FLAT CABLE DA 26 POLI CHE VA ALLA GALIL. Senza tale cavo i LEDS non si accendono.

LEDS INGRESSI AUSILIARI per scheda daughter 1X80 - verdi (I17-I24)

Indicano lo stato degli ingressi della eventuale scheda daughter della Galil 1X80.

LEDS DI ABILITAZIONE - verdi (ENX, ENY, ENZ, ENW)

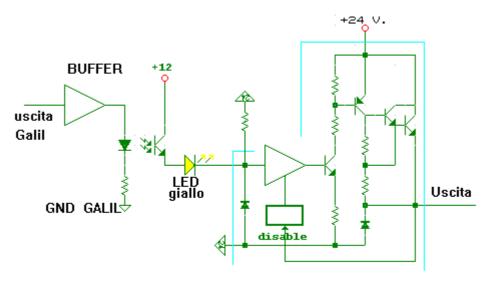

Indicano l'abilitazione avvenuta per gli assi X,Y,Z,W rispettivamente.

LEDS ENCODERS FAULT - rossi (ERX, ERY, ERZ, ERW)

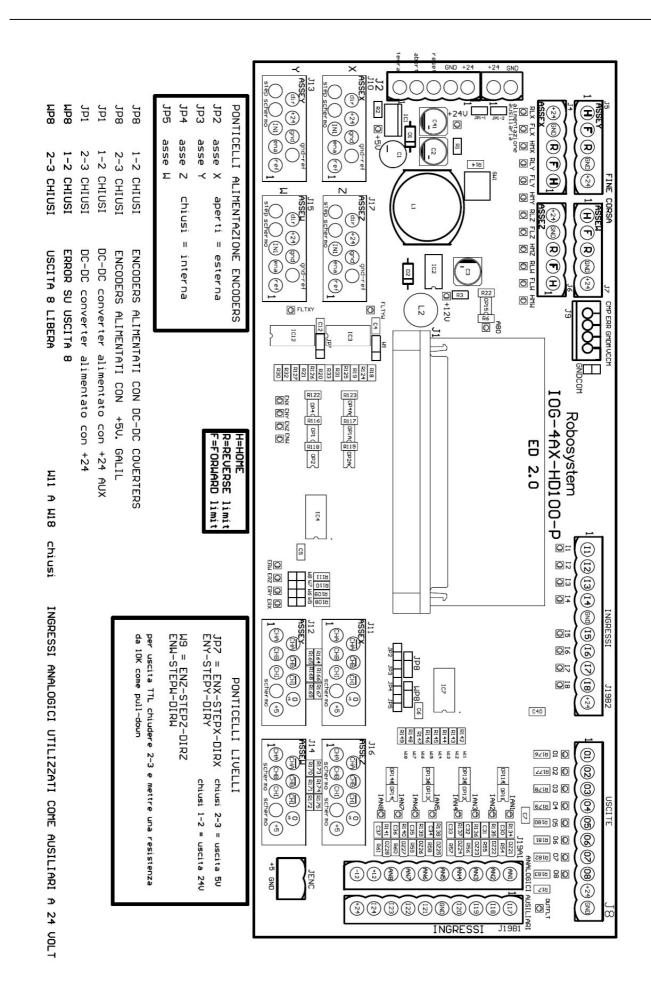
Indicano un mal funzionamento dell'encoder relativo.

SCHEMI ELETTRICI DEI CIRCUITI DI INGRESSI E USCITE

CIRCUITO DI INGRESSO GENERAL PURPOUSE E FINE CORSA


Esempio di interfaccia ingresso mediante interruttore, pulsante o relais meccanico

Per gli ingressi un segnale alto in ingresso (da 14.5 volt a 30 volt) farà condurre il fotoaccoppiatore interno alla Galil.


PER I FINE CORSA I COLORI DEI LEDS SONO COSI' DIFFERENZIATI:

GIALLO = REVERS
ROSSO = FORWARD
VERDE = HOME

CIRCUITO DI USCITA GENERAL PURPOUSE

Tensione di uscita= Vsupply - 0.6 volt Corrente di uscita = 250 milliampere su tutte le ucite = 400 milliampere su max. 4 uscite

