

Via Ettore Majorana, 4 20054 NOVA MILANESE - MI

Tel. +39 0362-492-1 Fax +39 0362-44337

SPECIFICHE IOG-4AX-DIN96

Modulo di Interfaccia GALIL (Econo Series)

Servotecnica S.r.l. Manuale IOG-4AX-DIN96

La scheda IOG-4AX-DIN96 ha lo scopo di permettere all'utilizzatore di interfacciarsi facilmente con il connettore 96-pin DIN (connettore DIN 41612) proveniente dal controllo Galil evitando cablaggi costosi in termini di tempo e con alta percentuale di errori.

I segnali vengono distribuiti su più connettori, ciascuno con una funzione specifica: segnali encoder, controllo azionamenti ,I/O ausiliari disaccoppiati etc.

DESCRIZIONE CONNETTORI E RELATIVI SEGNALI

CONNETTORE INTERFACCIA GALIL - J1

Il connettore J4 della Galil andrà collegato al connettore J1 della IOG attraverso il connettore 96-pin DIN.

GALIL	IOG	TIPO
J4	J1	DIN 96

CONNETTORI ALIMENTAZIONE

ALIMENTAZIONE PRINCIPALE - CONNETTORE J2

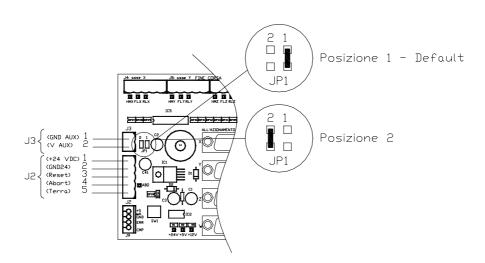
La IOG va alimentata a 24 VDC dal connettore J2. All'interno è presente un DC/DC converter per l'alimentazione degli optoisolatori e degli encoder.

	Connettore J2				
Pin	Nome	Segnale	Min	Max	
1	V24	Alimentazione +24	15 volt	30 volt	
2	GND24	GROUND	0 volt		
3	Reset	Reset per scheda GALIL	0 volt		
4	Abort	Abort programma GALIL	15 volt	30 volt	
5	TERRA	Collegamento schermi	Nodo di terra		

Il morsetto di terra non deve essere ponticellato col morsetto GROUND. La terra è connessa con tutti i gusci metallici dei connettori a vaschetta.

<u> ALIMENTAZIONE AUSILIARIA - CONNETTORE J3</u>

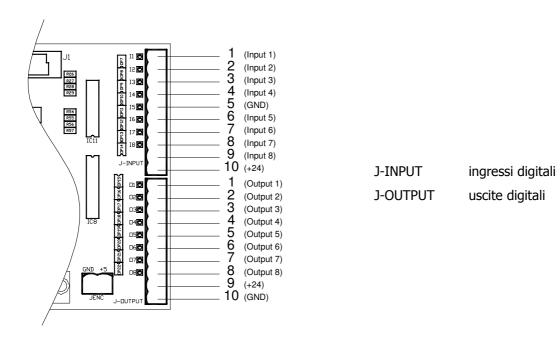
Il connettore J3 permette di separare l'alimentazione della scheda IOG (DC/DC converter) dall'alimentazione delle uscite. Occorre però configurare la scheda per mezzo del jumper a saldare JP1.


	Connettore J3				
Pin	Nome	Segnale	Min	Max	
1	GNDAUX	GROUND	0 volt		
2	VAUX	alimentazione DC-DC converter	14	30 volt	

Con **JP1** in posizione **1** (*Default*):

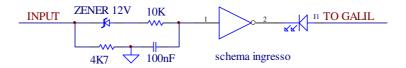
le alimentazioni sono comuni per il DC-DC converter e per le uscite.

Con **JP1** in posizione **2**:


l'alimentazione delle uscite diventa indipendente dal DC/DC converter. Si possono così utilizzare due alimentazioni indipendenti per la scheda (da J3) e per le uscite (da J2). Questo permette in caso di allarme di togliere tensione alle uscite senza bloccare la scheda: gli encoders, in particolare, continueranno a funzionare.

E' utile alimentare il DC/DC converter della IOG con alimentazione ausiliaria (o separata) qualora si utilizzino encoders ad alta risoluzione o cavi di connessione encoders molto lunghi. La chiusura dei pins è effettuata con resistenza da zero ohm a saldare.

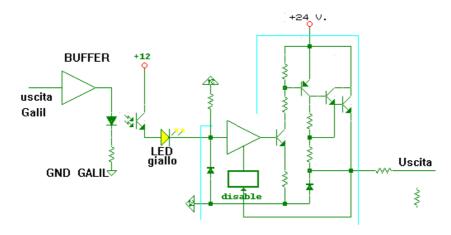
CONNETTORI INTERFACCIA UTENTE


La scheda IOG-4AX-DIN96 fornisce l'interfacciamento a schede GALIL fino a quattro assi; per schede a più di quattro assi vanno previste due IOG.

<u>INGRESSI DIGITALI GENERAL PURPOSE - CONNETTORE J-INPUT</u>

CONNETTORE J-INPUT				
	Nomenclatura		valore	
Pin	Nome	Segnale	Min	Мах
1	IN1	ingresso	14.5 volt	40 volt
2	IN2	ingresso	14.5 volt	40 volt
3	IN3	ingresso	14.5 volt	40 volt
4	IN4	ingresso	14.5 volt	40 volt
5	GND	comune	-	-
6	IN5	ingresso	14.5 volt	40 volt
7	IN6	ingresso	14.5 volt	40 volt
8	IN7	ingresso	14.5 volt	40 volt
9	IN8	ingresso	14.5 volt	40 volt
10	+24	+24 out	= alime	ntazione

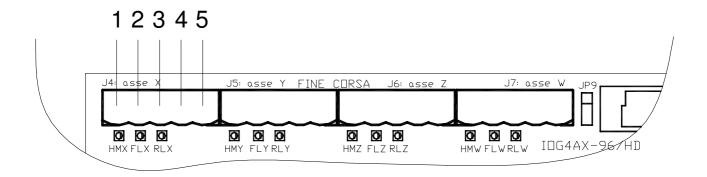
Lo schema elettrico degli ingressi è il seguente:


E' possibile modificare il livello di soglia minima (da 14.5 a 2.5 volt) sostituendo lo zener da 12 volt in serie al relativo ingresso con un jumper a saldare (cortocircuito). I diodi si trovano sulla parte posteriore della scheda IOG.

<u>USCITE DIGITALI GENERAL PURPOSE - CONNETTORE J-OUTPUT</u>

	CONNETTORE J-OUTPUT				
		Nomencl	atura	va	lore
Pin	Nome	Segnale	Tipo	Tipo	Corrente
1	OUT1	uscita	Open emitter	24 volt	0,2 A
2	OUT2	uscita	Open emitter	24 volt	0,2 A
3	OUT3	uscita	Open emitter	24 volt	0,2 A
4	OUT4	uscita	Open emitter	24 volt	0,2 A
5	OUT5	uscita	Open emitter	24 volt	0,2 A
6	OUT6	uscita	Open emitter	24 volt	0,2 A
7	OUT7	uscita	Open emitter	24 volt	0,2 A
8	OUT8	uscita	Open emitter	24 volt	0,2 A
9	+24V +24 out Alimentazione			ntazione	
10	GND24	comune		0	0

Tutte le uscite sono disaccoppiate dalla Galil e possono pilotare un carico max. di 0.4 ampere (contemporaneamente solo 4 uscite) o 0.20 ampere (su tutte le uscite contemporaneamente). Le uscite sono source driver (PNP): il valore della tensione sarà uguale a quello dell'alimentazione.

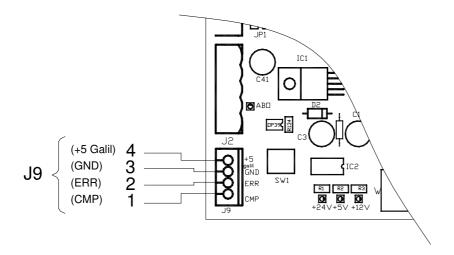

N.B. TUTTE LE USCITE SONO PROTETTE CONTRO I CORTO-CIRCUITI E SOVRACCARICHI, NON CONTRO LE SOVRATENSIONI. QUALORA SI DEBBA PILOTARE UN CARICO INDUTTIVO (ES. UN RELE'), E BENE ACCERTARSI CHE QUESTO SIA PROVVISTO DI DIODO DI RECUPERO.

Tensione di uscita= Vsupply - 0.6 volt Corrente di uscita = 250 milliampere su tutte le ucite = 400 milliampere su max. 4 uscite

<u>INGRESSI DI FINE-CORSA e HOME - CONNETTORI J4, J5, J6, J7</u>

I segnali di fine-corsa e home sono separati su quattro connettori, uno per ogni asse.

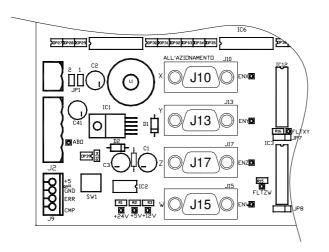
Pin-Out CONNETTORI J4, J5, J6, J7 ingressi fine-corsa e home


PIN	SEGNALE	DESCRIZIONE
1	НМ	HOME signal input
2	FL	FORWARD limit switch
3	RL	REVERSE limit switch
4	GND24	refernce 24 volt
5	+24 V.	24 V. out per switch

TUTTI GLI INGRESSI DEI FINE CORSA HANNO UN RANGE DA 14.5 V. A 30 V.

Il circuito di ingresso è riportato a Pag. 18.

<u>USCITA DI COMPARAZIONE E ERRORE (Output Compare e Error Output) - CONNETTORE J9</u>


L'uscita di errore è di tipo TTL e proviene direttamente da Galil. Spostando il jumper JP9 (vedi par. <u>Jumpers</u>) è possibile portare la stessa uscita sul pin 8 di J-OUTPUT (connettore uscite) così da avere un'uscita di errore optoisolata. In questo caso l'uscita digitale 8 non potrà essere utilizzata.

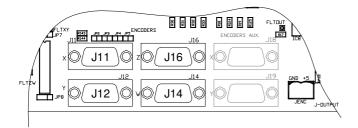
PIN	SEGNALE	DESCRIZIONE
1	CMP	segnale di COMP della Galil tipo TTL
2	ERR	Segnale di ERR della Galil
3	GND	ground Galil
4	+5 volt	alimentazione proveniente da Galil

<u>USCITE DI COMANDO - CONNETTORI J10, J13, J17, J15</u>

Le uscite di comando sono separate per ciascun asse e accessibili attraverso connettori DB9 maschio secondo lo schema seguente:

Connettore	Controllo azionamento
J10	Asse X
J13	Asse Y
J17	Asse Z
J15	Asse W

Pin-Out CONNETTORI J10, J13, J17, J15 comando assi


PIN	SEGNALE	DESCRIZIONE
1	REF	Segnale di comando (±10V)
2	ENA	abilitazione azionamento
3	IN1-2-3-4	general input (fault)
4	SHLD	schermo
5	STEP	step (event.motore a passo)
6	GNDM	ground del riferimento REF Galil
7	GND	ground della scheda IOGS
8	+24	
9	DIR	direzione (motore a passo)

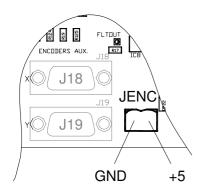
I segnali ENA STEP DIR sono disaccoppiati dalla Galil e possono pilotare un carico massimo di 0.25 ampere; sono inoltre PROTETTI E POSSONO ESSERE A 24V o 5V (PNP) selezionando un ponticello.

I segnali IN1, IN2, IN3, IN4 sono gli stessi ingressi IN1, IN2, IN3, IN4 presenti su J19B2.

<u>INGRESSI ENCODER - CONNETTORI J11, J12, J16, J14</u>

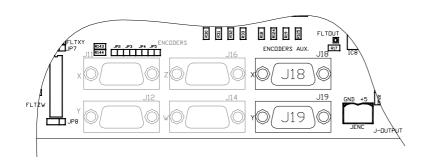
Ogni canale encoder è accessibile separatamente attraverso connettori DB9 femmina secondo lo schema seguente:

Connettore	Encoder
J11	Asse X
J12	Asse Y
J16	Asse Z
J14	Asse W


Pin-Out CONNETTORI J11, J12, J16, J14 ingressi encoder

PIN	SEGNALE	DESCRIZIONE
1	CHA	canale A encoder
2	СНВ	canale B encoder
3	CHI	canale indice di zero
4	SHLD	schermo
5	+5 V.	alimentazione encoder
6	CHA\	canale A negato
7	CHB\	canale B negato
8	CHI\	canale indice zero negato
9	GND5	riferimento aliment.encoder

I segnali complementari sono caricati da una R=150 Ω .


<u>USCITA DI ALIMENTAZIONE PER GLI ENCODER AUSILIARI - CONNETTORE JENC</u>

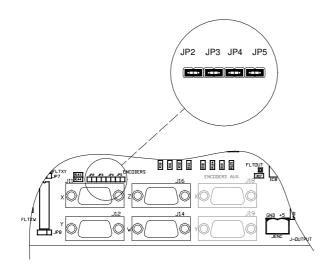
Il connettore JENC mette a disposizione un'alimentazione +5VDC per alimentare gli encoder ausiliari. L'alimentazione può essere fatta dal relativo connettore sulla IOG-4ENC.

PIN	SEGNALE	DESCRIZIONE
1	+5 volt	Uscita per alimentazione encoder
		aux, proviene dall'interno e dipende
		da JP10
2	GND	Ground IOG

<u>INGRESSI ENCODER AUSILIARI - CONNETTORI J18, J19</u>

Connettore	Encoder Aux
J18	Asse X
J19	Asse Y

Pin-Out CONNETTORI J18, J19 ingressi encoder aux

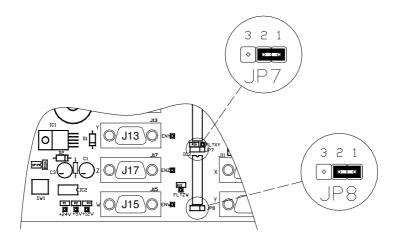

PIN	SEGNALE	DESCRIZIONE
1	CHA	canale A encoder
2	СНВ	canale B encoder
3	CHI	canale indice di zero
4	SHLD	schermo
5	+5 V.	alimentazione encoder
6	CHA\	canale A negato
7	CHB\	canale B negato
8	CHI\	canale indice zero negato
9	GND5	riferimento aliment.encoder

I segnali complementari sono caricati da una R=150 Ω .

JUMPERS

JUMPERS JP2,JP3,JP4,JP5

Determinano l'alimentazione encoder degli assi X,Y,Z e W rispettivamente.


Asse X	JP2	W5
Asse Y	JP3	W6
Asse Z	JP4	W7
Asse W	JP5	W8

<u>Jumper chiusi (Default)</u>: gli encoder vengono alimentati internamente: attraverso il DC/DC converter a bordo della IOG o dal 5 V della Galil a seconda dello stato del jumper JP10.

<u>Jumper aperti:</u> gli encoder non vengono alimentati: configurazione da adottare nel caso in cui l'alimentazione degli encoder provenga dall'esterno (ad esempio se si utilizza un moltiplicatore di conteggi esterno che richiede una alimentazione separata).

<u>JUMPERS JP7 - JP8</u>

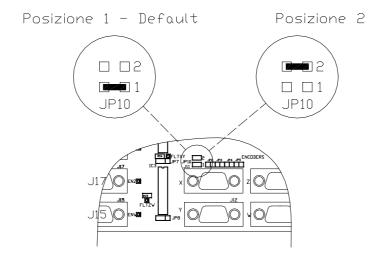
Determinano il valore di tensione dei segnali di ABILITAZIONE azionamenti, STEP e DIREZIONE.

JP7 ⇒ <u>AZIONAMENTI X,Y:</u>

• INSERITO IN POSIZIONE 1-2 (configurazione standard come in figura) le uscite sono a 24 volts;

• INSERITO IN POSIZIONE 2-3 le uscite sono a 5 volt.

Per avere un'uscita TTL occorre utilizzare una resistenza di pull down di circa 10 Kohm.


JP8 ⇒ <u>AZIONAMENTI Z,W:</u>

- INSERITO IN POSIZIONE 1-2 (configurazione standard come in figura) le uscite sono a 24 volts;
- INSERITO IN POSIZIONE 2-3 le uscite sono TTL.

Per avere un'uscita TTL occorre utilizzare una resistenza di pull down di circa 10 Kohm.

JUMPER JP10

Determina l'alimentazione per gli encoder.

Con **JP10** in posizione **1** (*Default*):

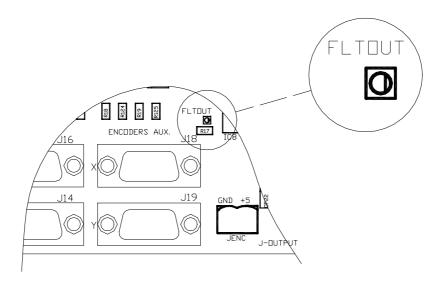
l'alimentazione degli encoders viene effettuata tramite DC/DC converter IOG.

Con **JP10** in posizione **2**:

è possibile (anche se sconsigliabile) alimentare gli encoders tramite l'alimentazione proveniente dalla Galil (IOG-PS13).

LED DI SEGNALAZIONE

LED DI ALIMENTAZIONE

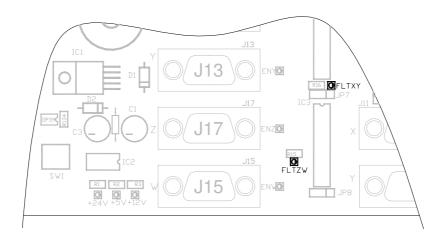

+24	segnala la presenza dell'alimentazione +24V della IOG
+5	segnala la presenza del +5V generato dal DC/DC converter della IOG.

+12 segnala la presenza del +12V generato dal DC/DC converter della IOG.

FAULT USCITE (FLTOUT)

N.B. Ogni uscita è protetta: in caso di corto circuito o sovraccarico un led rosso segnalerà l'anomalia. Un pulsante di reset (o lo spegnimento del sistema) permette il reset delle uscite.

Si accende qualora sia presente un corto circuito o sovraccarico su una qualsiasi selle uscite.

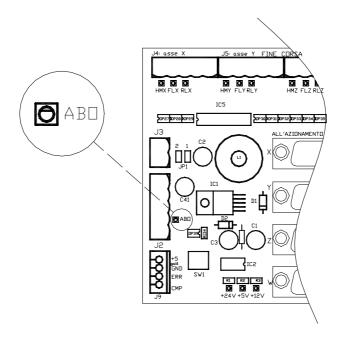


Il FAULT disabilita tutte le uscite, i leds gialli relativi alle uscite abilitate rimarranno però accesi permettendo con facilità di individuare l'uscita in corto circuito.

X-Y FAULT (FLTXY) / Z-W FAULT (FLTZW)

FLTXY: Si accende qualora sia presente un corto circuito o sovraccarico su una qualunque uscita dei connettori J10 e J13 [segnali: ENX, STEPX, DIRX, ENY, STEPY, DIRY].

FLTZW: Si accende qualora sia presente un corto circuito o sovraccarico su una qualunque uscita dei connettori J17 e J15 [segnali: ENZ, STEPZ, DIRZ, ENW,STEPW,DIRW].

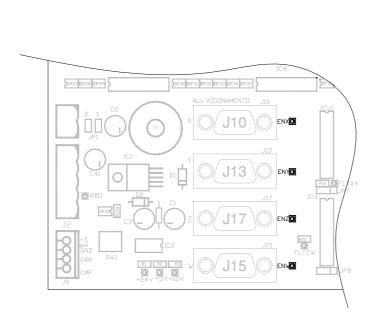


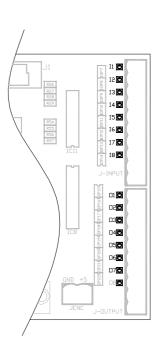
IL reset dei FAULT si ottiene utilizzando il pulsante presente sulla IOG ovvero spegnendo l'alimentazione della IOG.

LED ABORT - verde (ABO)

Si accende in presenza di un segnale alto (abort) sul connettore J2 pin 4.

Si trova subito a destra di J2.

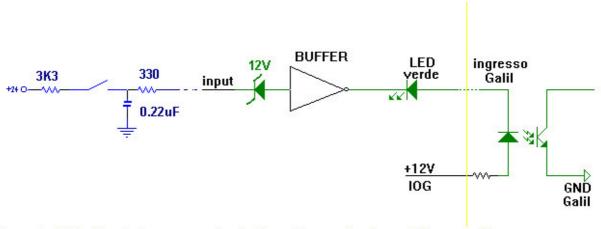



LEDS USCITE - gialli (01-08)

Si accendono rispettivamente in funzione delle uscite abilitate. Contribuiscono anche alla visualizzazione di un'anomalia (corto circuito) sulle uscite in congiunzione al led rosso USCITE-FAULT.

LEDS INGRESSI - verdi (I1-I8)

Indicano lo stato degli ingressi; SONO IN SERIE AL FLAT CABLE DA 26 POLI CHE VA ALLA GALIL. Senza tale cavo i LEDS non si accendono.

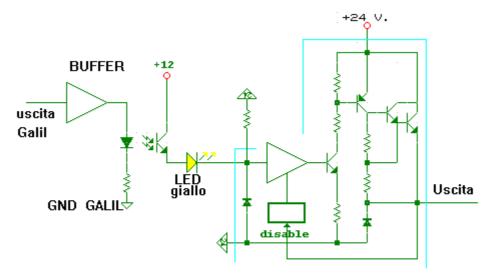


LEDS DI ABILITAZIONE - verdi (ENX, ENY, ENZ, ENW)

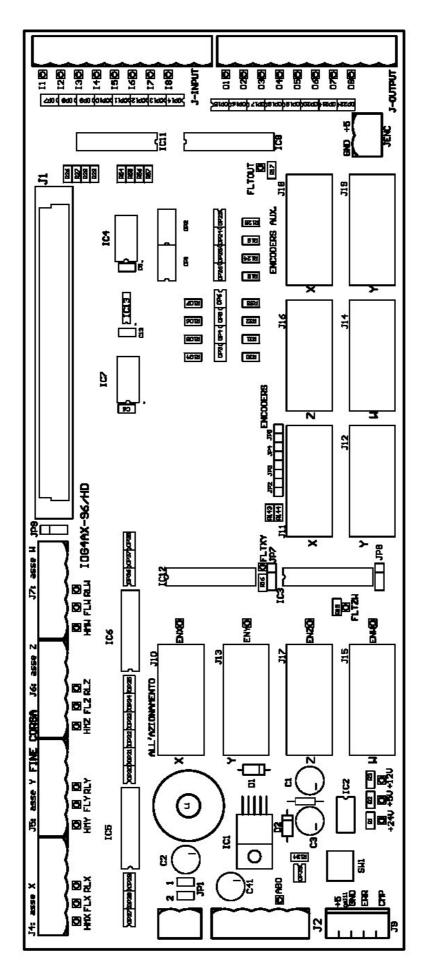
Indicano l'abilitazione avvenuta per gli assi X,Y,Z,W rispettivamente.

SCHEMI ELETTRICI DEI CIRCUITI DI INGRESSI E USCITE

CIRCUITO DI INGRESSO GENERAL PURPOUSE E FINE CORSA


Esempio di interfaccia ingresso mediante interruttore, pulsante o relais meccanico

Per gli ingressi un segnale alto in ingresso (da 14.5 volt a 30 volt) farà condurre il fotoaccoppiatore interno alla Galil.


PER I FINE CORSA I COLORI DEI LEDS SONO COSI' DIFFERENZIATI:

GIALLO = REVERS
ROSSO = FORWARD
VERDE = HOME

CIRCUITO DI USCITA GENERAL PURPOUSE

Tensione di uscita= Vsupply - 0.6 volt Corrente di uscita = 250 milliampere su tutte le ucite = 400 milliampere su max. 4 uscite

