ALTERA® CYCLONE:x FPGA EVALUATION BOARD

SOCkit User Guide

-
lom
Dallas Logic

2300 McDermott #200-305
Plano, TX 75025

www.dallaslogic.com

Version 1.2-February 2004
©2003 by Dallas Logic Corporation. All rights reserved.

Table of Contents

INtrodUCHION ... 3
SOCKkit Board QUICK STATtcuiuiiiiiiiiciicii bbb 5
Component DesScCHPlioNScccveviiiriimiemmssses s eeseees 5
SOCKkit Board Device Placement DIagramcccccccueiiiiiiniiinininininiiccccceieeee e 6
ALtera CYClONE DIEVICE ..ttt bbbttt ettt ne 7
128IK X 8 DIt SRAM ..ottt 7
EPCS4 serial flashc.ccuiiiiiiiiiiiii e 8
ByteBlaster II Programming Headerscooviviiiiiiiiiiiiiiiicccccccieess e 8
16x2 LCD Display and Menu Buttons.........ccciiiiiiiiiiiiiiiienicenieesie e sesssssesesssssens 8
8 Channel LLVIDS ... 8
Reset Circuit and BUttOn ... 10
RS232 TNLEITACE vttt bbbt 10
FPGA User IO Bankscoiuiiiiiiiiiiiir st 10
Indicator LED, DIPSWILCR c...vviiiiiiiiiiiiiciciic st 10
CLOCK OSCIIATOT ...t 11

Software and Hardware Setup......cccccccciiiimmmmmmsssnnnmmnsesnnnnnnsssss 12

SOCKIt BOALd SEUP....vvieiiiiiiiiiii s 12
Altera Software and ByteBlaster IL.......ccccoviiiiii e 13
GNUpro C Development ENVIFONMENT ..o ssssssnens 13
5V and external Interfacing (LCD ModULe)cociiuiiiiiiiiiiiiiiiniieiieieie s 14
Altera Reference DOCUMENLS. ..o 15

Exploring the SOCKkit Reference Design..........cccommmmmmmeenencisinnnnnn 15

Quartus IT TUtOr1al INStIUCHONS. cueveueueriririeteieieiirieieteetst ettt es ettt sttt b ettt be bttt bebesenenssees 16
Nios Shell Environment BasiCs......cocciiiiiiiiiiiiiiiiiiccicieeieeeee et 17
SOCKkit Board Block DIagram ... 18
Nios Softcore and SOPC BUilder ... 19
Nios MemOry OrZanizZatiOn ..ottt s s s s s nena 22
LVIDS SeIaliZEL ..oucuviiiiiiiiicitncici s 24
LVDS De-serializer and Byte ELrOr TeStu ..ot 25
SOCKit SOftWare DESCIIPHONuuviieiiiiiiiiiciiiei st 26
Boot Flash to SRAM Copy Program.......c.cciiiiiiiiiiiiiiiiiicniiice e sessens 28
LCD Menu Operation FIOWCRATt ..o 30
Reference Design SChemMatiC.. .. 31
SOCKkit Board Technical HElp.......coiiiiiiiiiiiiiiiiiiiiiiie e 31
Warranty INfOrMAtIONovvvvieiiriiicicecicieieieietee ettt bbbttt sttt benen 31
DISCLAIMIET ..t 31

Introduction

Thank you for purchasing Dallas Logic’s SOCkit (System On a Chip) FPGA evaluation board. This
FPGA kit has everything you need to start designing with and evaluating the powerful features of Alteras
Cyclonen FPGA devices. Whether you just want to learn about FPGA design, or have a specific design
implementation to complete, this evaluation board will jump-start the your own Cyclonew efforts.
Altera’s Quartus II Web-pack software which contains Nios SOPC builder (trial version) is a state of the
art software tool which allows coding, compilation, and simulation of fairly complete SOC designs in a
programmable logic environment. Your SOCKkit includes the following items:

= SOCKkit evaluation board

= External 16 character X 2 line LCD module
* 14 pin LCD ribbon cable

= LVDS patch cable

= Wall mount type 5VDC/2A switching power supply (US or Asian/European model,
depending on which was ordered)

= DB-9 RS232 cable (male to female, wired straight thru)
= ByteBlaster II FPGA programming cable
= Alteras “web-pack” Quartus II CD (SOPC builder trial version and GNUPro C toolkit).

= SOCKkit reference design and data files CD.

JAITER

Quartus Il Software Starter Suite
July 2003

Although the SOCkit board will run by itself “out of the box”, you will need access to a PC to view and
explore the reference design files. Altera’s Quartus II software supports both Windowse and Linux
operating systems. Consult Altera’s website at www.altera.com for specifics on operating system
requirements. As of this writing, Quartus II version 3.0 for Windowse requires Microsoft Windowse
NT4.0 (SP3), 2000, or XP. Users who need support for Windowse 98 can download Quartus II Web
Edition version 2.2 software including service pack 2.

A male to female DB25 “LPT printer port” cable will be required to connect Altera’s ByteBlaster 11
programmer cable to your PC (The ByteBlaster can be plugged directly into a notebook PCs LPT port, but
the connector cable is only 11.5 inches long). See the section on Software and Hardware setup for more
details on setting up your SOCKit.

Note that Alteras and Cyclonen are registered trademarks of Altera Corporation. Windowse is a
registered trademark of Microsoft Corporation. No further reference to this will be made.

A close-up picture of the SOCKkit card is shown below:

——MENU—
RN

'.__'._/.__P._)‘_)_.)u a,_.'*‘ e

RN2 4JB1=B’

8¢#00F _¥0 B
80E0 DAZI-EE
ADBIOTILAD

VLOEODGEVY 1
BOrPIL90143

P

o
™
&

5}
ot

b ,:]'-.‘

SOCkit Board Quick Start
To quickly see your SOCkit board function, complete the following steps:

1.

Locate your SOCkit board and LCD module so as to not short any of the pins on the

bottom of the PCB. Make sure to clean away any loose wire or solder from the
SOCKkit/LCD bench area.

Connect the external LCD module to header JB1-B using the supplied 14 pin ribbon cable.
Be sure to propetly orient pin 1 on the ribbon cable (red wire) to pin 1 on the SOCkit
board header connector and LCD header connector. Pin one is labeled on each header
connector (labeled bottom of LCD PCB).

Verify that Dip-Switch S3, switch 1 is in the “on” position (selects boot Nios processor
from flash, instead of load via RS-232 using the GERMS monitor).

Plug the external power-supply into a wall outlet. If outside the U.S., make sure you
received the Asian/European model and have an appropriate plug adapter (supply input
voltage is 230V AC, 50/60Hz in some areas overseas).

Connect the external power supply to J5 (1.3mm DC jack).

Your SOCKkit evaluation board will power-up and boot the Nios processor. You can

experiment with the LCD menus by pressing the “menu” and “select” buttons which are
labeled on the SOCkit PCB.

WARNING!! Do not directly connect 5V devices to the SOCKit 10 pins. See the section on 5V
interfacing for proper connection methods.

Component Descriptions

The SOCKkit evaluation board provides all the “essentials” for properly implementing a compact and cost
effective Cyclone/embedded Nios design. Specific components of the SOCkit board design are:

Altera EP1C6 Cyclone FPGA, available in —6 or —8 speed grades.

128K x 8 bit asynchronous SRAM with 12ns access time.

EPCS4 serial flash for FPGA configuration, Nios software image storage, and non-volatile data

storage

Separate ByteBlaster II programming ports (ASMI flash interface and JTAG interface).

LCD interface and 2 line X 16 character LCD display with “menu’ and “select” buttons.

8 channel LVDS support with data rates up to 312 M bit/s and provision for PLL clock

transmit and recetve.

Reset button and monitor IC which provides 400mS reset pulse.
9 pin D-SUB connector and RS-232 interface
Up to 94 FPGA 1O available on header pins.

Four Banks of user 10, two at 3.3V VIO, one at 2.5V (LVDS) VIO, and one voltage
configurable VIO bank which is pre-set for 3.3V VIO.

6 discrete indicator LED (one red, one yellow, four green).
4 position general purpose dip-switch.

Clock oscillator (24 Mhz).

SOCkit Board Device Placement Diagram
The SOCKkit board placement diagram is shown below. Refer to this diagram to find the reference
designators of components discussed in this user manual. All pin headers are placed on 0.1 inch spacing
to allow the use of standard prototyping “perf-board” with the SOCkit.

O woa-aibosejjep -mmm Y¥HOS “8UO[IAD O

Pt
gl -P#

T
™
— n
Bya— K
H2 T8 g
+ CIT o C'_:[Ih :tn <
;g 1m D gh
[og} —
5 'Céﬁ_le &y?
T A fuoc IN
T4 L1t
PR) LT o

Altera Cyclone Device
The SOCKkit evaluation board comes populated with one Altera EP1C6 Cyclone FPGA in the 144 pin
TQFP package (U3). Boards come with either the —6 or —8 device, depending on which configuration was
ordered. The 144 pin EP1C6 device provides the following programmable logic resources:

= 98user 10 pins

= 5980 Logic Elements (LE)

= 92,160 RAM bits or approximately 11.5K bytes (20 M4K RAM blocks which are 128x36 each)

= 2 PLL modules

* Four banks of user 10, each individually powered by separate VIO input pins.
Note that with the 144 pin package, one PLL device can drive and receive on dedicated PLL pins, and the
other PLL can only receive on dedicated PLL pins (only drive to a user 1O pin as the dedicated transmit

PLL output pins are not present). Altera specifications provide for the following PLL operating
frequencies based on speed grade:

Device PLL Input Maximum PLL
Frequency output
EP1C6 -6 15.00-200 Mhz 312 Mhz
EP1C6 -7 15.00-181 Mhz 283 Mhz
EP1C6 -8 15.00-166 Mhz 260 Mhz

The maximum operating frequency of a logic design is dependent on the number/speed of logic delays
and the logic fit/placement to the device. Consult Altera’s Cyclone Device Handbook for more
information on internal device timing and design speed estimation.

128K x 8 bit SRAM
The 128K x 8 bit asynchronous SRAM (U2) on the SOCKkit board provides more RAM storage space off-
chip of the FPGA. This can be used as general purpose buffer space or as execution and data space for
larger Nios software programs. Small Nios routines can execute out of the internal M4K block RAMS,
but this will not be enough space for larger software routines. Also using the bulk of the M4K RAM
blocks for software execution means they are not available for FIFO or DPRAM type storage circuits.

The Nios software load can be copied from the EPCS4 flash device after FPGA configuration by a small
resident boot program (in the Cyclone M4K blocks), or downloaded via RS232 using Altera’s GERMS
monitor. Both the boot program source file (.srec) and GERMS monitor option is selected when

instantiating a Nios ROM (using SOPC builder) and is automatically programmed into the M4K RAM
blocks at FPGA configuration.

The SRAM is a 12ns access time device. Note that for Nios interfacing, dynamic bus sizing is
implemented. The Nios uses a 16 bit instruction which will require two clock cycles to fetch one
instruction from memory.

EPCS$4 serial flash

The EPCS4 serial flash device (U9) is used to load the FPGA hardware configuration data, and then also
contains the NIOS software image which is loaded into SRAM by Nios after boot-up. The EPCS4 device
is a 4Mbit device and contains 4,194,304 bits of program space. The EP1C6 FPGA requires 1,167,216
bits (non-compressed) for its configuration load, which leaves approximately 3,027,088 bits (378K bytes)
for Nios software images and user data. Note that an EPCS1 device provides 1,048,576 bits of storage.
This will provide FPGA configuration space for the EP1C6 device (compressed mode), but will not
provide adequate data space for user applications.

The EPCS4 device supports byte or buffer moves of data, and also has software driver and interface
support via Altera’s SOPC builder.

ByteBlaster Il Programming Headers
Two separate 10 pin programming headers are provided on the SOCkit board. One header is for the
ASMI flash interface (J3) on the EPCS4/Cyclone devices, and the other is for the Cyclone JTAG pott (J2).
Two separate programming ports allows the SOCkit design to support Flash reads and writes at the same
time the JTAG port is being used for operations like Altera SignalTap logic analyzer (Quartus I feature),
or in-circuit debug. Note that the ASMI port is used to program the FPGA load into the EPCS4 flash
device.

16x2 LCD Display and Menu Buttons
The LLCD panel is a 16 character by two line display unit. This can be used for general character display of
data and menu information. Two menu buttons can be used to select items on the LCD display. One
button is labeled MENU (can be used to step through menu selections), and the other is labeled SELECT
(use to select menu items). Note that the LCD is the only 5V device on the SOCkit board. See section on
5V interfacing for detailed information on 5V interfacing considerations.

8 Channel LVDS
On the SOCKkit design, Cyclone FPGA I/O Bank 3 is powered by 2.5V and is dedicated for LVDS
operation. There are twenty two total 10 available on Bank 3, sixteen of which are used to provide eight
differential LVDS channels. The unused 1O pins are routed to header JB3. On the Cyclone FPGA there
is no dedicated setialization/de-setialization hardware. Therefore, you have to use your own logic design
for this, in addition to the on-chip PLL devices and 1O pins.

All LVDS nets on the SOCkit PCB are routed as differential pairs to maintain proper differential signal
impedance (nominal 100 ohm differential impedance and 52 ohm impedance to ground). Four of these
LVDS channels are for transmitting data, and four are for receiving data. These differential pairs are 7 mil
width at 20 mil center to center spacing. They are also 5 mil above the reference ground plane located
directly underneath the top layer. A PCB image of the differential routing is shown in the following
picture:

Four of the LVDS channels are connected to IEEE1394 fire-wire connectors due to the connectors
controlled impedance and balanced signal properties (~100 ohm differential impedance). These channels
are on header J10-clk/data receive, and J11-clk/data transmit. The other four LVDS channels are each
connected to simple three pin headers (J6-RX1, J7-RX2, J8-TX1, J9-TX2). This allows for user
characterization of the LVDS signals at various data rates on both controlled impedance and low cost pin
headers with varying lengths of cabling. For the pin headers, shielded twisted pair or just twisted pair cable
can be tested. For the IEEE1394 connectors, controlled impedance/balanced fire-wire patch cords in
varying lengths can be tested. The reference design provides byte error testing of one set of LVDS
channels (using the LCD display) as well as multiple test pattern transmission. Modifying the FPGA pin
definitions and then initiating a Quartus II compilation changes which pins, and thus the associated header
the LVDS patterns will be output to and received on. The SOCkit-6 and SOCkit-8 LLVDS boards have
both been tested up to 320Mbs using the supplied fire-wire patch cord. Testing was done in loop-back
mode and board to board at room temperature and nominal operating voltage. This data rate slightly
exceeds Altera’s maximum specification. Not all boards are guaranteed to operate while exceeding
specification. Note that the SOCkit uses IEEE 1394 fire-wire cables and connectors due to their electrical
properties and low-cost. J10/J11 DO NOT provide IEEE1394 physical layer signals and should not
be connected to IEEE 1394 fire-wire devices. Only attach these connectors to other SOCkit boards or
LVDS IO based components.

For VDS designs which transmit a separate clock and data signal, the clock signal can only be received to
the internal Cyclone PLL on the dedicated RX PLL CLOCK pins. On the SOCkit design, these pins are
on RX connector J10 which is one of the controlled impedance connectors. Therefore, to test the pin
header data channels, you will still have to receive the clock signal on J10. The provided fire-wire patch
cable can be used for this (loop-back), or you can “touch solder” your own cable to the bottom of the
SOCkit PCB J11/J10 pins. The pin numbers for J11/J10 are present on the bottom of the PCB. Note
that the length of cabling for your data channels must match the length of cabling for the clock
signals, or else the clock and data signals will be skewed with respect to each other. At 312Mhz, you only
have 3.20ns in your clock period (rule of thumb, 6 inches of conductor incurs lns of delay).
IMPORTANT: When manually loop-back wiring the clock (J11 to J10) on the bottom of the PCB,
make sure you “cross” the differential signals (fire-wire cable standard). This is the way it is implemented
in the schematic, but it is easy to overlook and make a mistake. Wire J11 pin 5 to J10 pin 3. Wire J11 pin
6 to J10 pin 4.

Finally, for implementation of LVDS on Cyclone FPGA devices, special attention must be given to
placement of differential and single-ended IO within the same bank. Also the pin assignhment and routing
of a data/clock pair must be done while paying attention to incurred timing skew. See Altera’s Cyclone
Device Handbook, section 9 titled “Implementing LVDS in Cyclone Devices” for details on Cyclone
LVDS design.

Reset Circuit and Button
The SOCKkit board provides a TPS3802 voltage monitor (U8) and reset button (S4). This reset signal is
active low and drives the dedicated reset pin on the Cyclone FPGA device. A Quartus II setting defines
this Cyclone FPGA pin to be either a dedicated chip wide reset or a user IO. Even if the pin is defined as
user 1O, the signal can still be used to reset individual circuits within a given design.

The TPS3802 will provide a 400mS reset pulse for the following events:
* Board power up
® Press of reset button
= 3.3V power out of range
* Following FPGA configuration and loading

During FPGA initialization, the conf_done (open drain) pin from the FPGA asserts the MR- (manual
reset) input pin of the TPS3802 and causes a logic reset to the FPGA and any external devices connected
to the reset signal on the pin header. Once the FPGA has finished loading, conf_done will float high, and
reset will de-assert approximately 400ms after FPGA configuration has finished.

R$232 Interface
The RS-232 interface provides RX, TX, CTS, and RTS signals. Connection is made via J4 which is a
female DB-9 connector. A DB-9 RS-232 male to female cable is provided in your SOCKkit , and is used to
connect the SOCkit RS-232 port to a PC. This cable is wired “straight-thru” and does not have any
crossed wires as does a null modem cable. The RS-232 interface supports Altera’s GERMS monitor, and
general Nios program loading and debugging. It can also be used for user applications.

FPGA User 10 Banks
There are four separate IO banks on the Cyclone device. Each has its own power pins so that multiple IO
types can be supported from a single Cyclone device (IO Bank voltages in addition to the 1.5V core
voltage). On the SOCKkit board, banks 1,2 and 4 are powered with 3.3V. Bank 3 is powered with 2.5V in
order to support LVDS operation. Note that bank 4 is powered through 0 ohm resistor R15. This allows
lifting of the resistor and powering with a different IO voltage if desired. Pin headers are labeled on the
PCB according to their associated IO bank number (JB1, JB2, JB3, |B4).

Indicator LED, Dipswitch
The SOCKkit board provides six general purpose LED outputs (four green, one yellow, one red), and four
general purpose dip-switch inputs. Refer to schematic page 6 for details on which FPGA 1/O pins are
used for the LED illumination. The switch schematics are shown below. S3 provides a general purpose
dip-switch and should be used in conjunction with the programmable pin pull-up resistors on the Cyclone
FPGA. S1/S2 provide general purpose push-button switches and are labeled as “MENU” and

10

“SELECT” for use with the LCD display and the SOCKkit reference design. Note that a timer based de-
bounce circuit is used along with input switches S1 and S2.

SLI_TL 3301 SPF 16806
- 1
Pin 47, B4 108 e s
R . R2 Ly
3 A — A
pin 4]l pa10z o2 pin 82 17
R21 53 =0
1 pr—
o A a3 -
pin 40l e 108 332 §: . SH_TL3301SPF 16006
Hat = R3 1
3
- 330 ke . -
Pin 508 _Bi__LElL)\NV\,_ ero B) 1. 6K H_7
R25 ps

Clock Oscillator

There is a 24.000 Mhz oscillator (U1) installed on your SOCkit board. This value is evenly divisible by a
baud rate of 19.2K (1250 x 19200 = 24000000). It also works well to generate the LVDS data rates
required, and is above the 15.0 Mhz required minimum PLL input frequency for Cyclone FPGAs.
SOCKkit boards are shipped with either the EP1C6-8 or EP1C6-6 devices which have a maximum PLL
operating frequency of 260 and 312 Mhz respectively. For the -8 speed grade EP1CO0, this requires use of
a4/3 PLL ratio (at 24 Mhz) which results in an LVDS working frequency of 32 Mhz (4/3 * 24 = 32). 'The
resulting LVDS transfer frequency is 256Mhz (32Mhz X 8). For the -6 speed grade part, this requires use
of a 13/8 PLL ratio (at 24 Mhz) which results in an LVDS working frequency of 39 Mhz (13/8 * 24 = 39).
The resulting LVDS transfer frequency is 312 Mhz (39Mhz X 8). The table below shows device speed
grades along with their associated PLL ratios and LVDS data rates.

SOCKkit Part Device PLL Input Max. Specified PLL Ratios at
Number Frequency PLL output 24Mhz
SOCKkit-6 EP1C6 -6 15.00-200 Mhz 312 Mhz (24*13/8) * 8 =312
SOCkit-8 EP1C6 -8 15.00-166 Mhz 260 Mhz (24 * 4/3) * 8 = 256

Altera EP1C6 devcies support two on-chip PLL modules. Other PLL ratios can be implemented
depending on design clock requirements. Both the SOCkit -6 and SOCkit-8 LVDS designs were tested at
transfer rates of 320Mhz at normal operating conditions (room temperature and nominal voltage). This
slightly exceeds Altera’s maximum specified frequency.

11

Software and Hardware Setup

SOCkit Board Setup
The SOCKkit board and accessory cables should be connected as shown in the picture below:

H.Jajsejgaiig

Detailed steps to configure and run your SOCKit board are:

1. Locate the PCB and LCD module so as to not short any of the pins on the bottom of the
PCB. Make sute to clean away any loose wite or solder from the SOCkit/I.CD bench
area.

2. Verify that Dip-Switch S3, switch 1 is in the “on” position (selects boot Nios processor
from flash, instead of load via RS-232 using the GERMS monitor).

3. Connect the external LCD module to header JB1-B using the supplied 14 pin ribbon cable.
Be sure to propetly orient pin 1 on the ribbon cable (red wire) to pin 1 on the SOCkit
board header connector and LCD header connector. Pin one is labeled on each header
connector (labeled bottom of LCD PCB).

4. Loop-back LVDS connector J13 to J12 with the supplied LVDS patch cord (if you want to
run LVDS tests).

5. Connect the ByteBlaster II cable to J2 (JTAG) programming header.

12

6. Connect the DB-9 RS-232 cable to J4 on the SOCKkit board, and an available 9 pin RS-232
COM port on your PC. You will need to know which specific COM port the cable is
plugged into (COM1, COM2, etc).

7. Plug the external power-supply into a wall outlet. If outside the U.S., make sure you
received the Asian/European model and have an appropriate plug adapter (supply input
voltage is 230V AC, 50/60Hz in some areas overseas).

8. Connect the external power supply to J5 (1.3mm DC jack).

Note that the SOCKkit board can accept 5V input voltage via the 1.3mm DC jack (J5-center pin positive).
It can also be powered by using pin 9 and pin 10 of JB3 (for use with a bench-top power supply). Pin 9 is
Input Ground and Pin 10 is for 5V. J1 provides power output connections, and is labeled with 5V, 3.3V,
2.5V, 1.5V, GND. These outputs can be used when connecting external components to the SOCkit
assembly. The input fusing on the SOCkit board is limited to 1A. For bench-top power supply operation
the SOCkit is designed to operate at 5V +/- 5% and requitres approximately 200 mA of curtent. Do not
exceed this voltage specification when applying external power.

Altera Software and ByteBlaster Il

Your SOCkit comes with Altera’s Web-pack development CD and a ByteBlaster II programming cable.
The Web-pack CD should be installed on your PC to provide Quartus II and Nios/SOPC support
(Nios/SOPC install is optional). Quartus II is used to compile your design files and Program the Cyclone
FPGA on the SOCkit boatd (via the ByteBlaster II programmer). Nios/SOPC installation is required only
to support implementation of Nios processor designs. Quartus II version 3.0 for Windows requires
Microsoft Windows NT4.0 (SP3), 2000, or XP. Users who need support for Windows 98 can download
Quartus II Web Edition version 2.2 software including service pack 2. You may be required to request a
web-pack license from Altera, even though the software is essentially free.

Web-pack Quartus II provides incredible design capability and fully supports the Cyclone line of FPGA
devices (web pack has limited compile functionality for Stratix and higher end FPGA devices). The web-
pack SOPC builder version is a trial version and implements a “clock-counter” limitation for Nios
processors. This means that a Nios processor instantiated with web-pack will quit functioning after a few
days (dependent on clock frequency). For learning or testing on the SOCKkit board this is not a serious
limitation, but to implement working Nios designs on your own products, you will have to acquire a full
Nios license from Altera. The reference design Nios implementation that came with your SOCkit board
does not have this limitation. This will only apply to Nios designs that are generated with the web-pack
version of SOPC builder.

The ByteBlaster II cable is plugged into the LPT (printer) port of your Windows/Linux PC. For detailed
information on Quartus IT/ByteBlaster IT installation, setup, and requirements access www.altera.com and
reference their online documentation.

GNUpro C Development Environment
The Quartus 11 web-pack CD contains the C development environment for Altera Nios. This is the
standard GNUpro C development environment which has some extras for working with Altera Nios.
This option should be installed to your PC if you want to write Nios routines in C or change the programs
that came with the SOCKkit reference design.

13

5V and external Interfacing (LCD Module)

WARNING!! Do not directly connect 5V devices to the SOCKkit 10 pins. Read further for proper
5V interfacing methods.

Cyclone FPGA devices provide interfacing capability for multiple 10O standards, and flexibility in
interfacing. By choosing the right VIO voltage, various 10 standards can be supported. But, Cyclone
devices do not support 5V VIO and therefore 5V interfacing techniques must be given special attention.
From Altera’s Cyclone Device Handbook, section 11, the main interfacing features that Cyclone FPGA
devices provide are:

* Hot-Socketing- add and remove Cyclone devices to and from a powered-up system without
affecting the device or system operation

* Power-Up Sequence flexibility—Cyclone devices can accommodate any possible power-up
sequence

* Power-On Reset- Cyclone devices maintain a reset state until voltage is within operating range

Please refer to chapter 11 of Altera’s Cyclone Device Handbook for details on Cyclone 10O interfacing.
Cyclone FPGA devices provide a separate 10 and core voltage power structure.

The first main consideration for 5V operation is PCI clamping diodes on the Cyclone FPGA 10 pins
(which are enabled by the user, during re-configuration, or if the FPGA device is not configured). The
PCI clamping diodes will cause 5V signals being driven to the FPGA to essentially be shorted to ground
via a 4.1V clamping diode. In this situation series resistors are required to limit the current flow out of the
5V driving pin. The second main consideration is the V-high voltage of the Cyclone IO pin that is driving
to a 5V device. For TTL type 5V devices, the drive voltage is sufficient (voltage above 2.4V). For 5V
CMOS type devices, the drive voltage may not be sufficient to signal a high voltage level to the 5V device.
Note that adding a pull-up resistor will not provide a higher voltage than the output voltage that is being
driven by the Cyclone 10 pin.

On the SOCKkit board, The LCD module is the only 5V device. The interfacing precautions taken are the
use of 100 ohm series resistors (RN1, RN2) on the bi-directional LCD data bus. The LCD data bus pins
are the only 5V pins that can drive back to the Cyclone FPGA (during FPGA re-configuration, FPGA not
configured, or FPGA tri-stated). Note that the LCD module is always written to in normal operation (no
reads) and will not dtive back to the FPGA unless the R/W- and E pins ate asserted accordingly by the
FPGA.

Header J1 provides 1.5, 2.5, 3.3, and 5V pins for powering external devices. Make sure you properly
configure any 5V circuits which you attach to the SOCkit board (add series resistors and check voltage
high requirements). Improper connection of 5V circuits can damage the SOCkit Cyclone FPGA or the
external components which you are interfacing to. Finally, also make sure you do not exceed the power
and current capability of the SOCkit board when connecting and powering external devices (SOCkit
power input has a 1 amp fuse at 5V DC).

14

Altera Reference Documents
This User Manual is a guide to the SOCKkit reference design as well as a “‘quick start” guide for basic Nios
and Quartus II operations. It is not intended to replace the standard set of Altera documentation which is
necessary for detailed design of Cyclone/Nios systems. All of Alteras documentation is available online at
www.altera.com. In particular, the following documents should be referenced:

= Cyclone Device Handbook , Volume I and II
http://wwwe.altera.com/literature/hb/cve/cvclone device handbook.pdf

= Serial Configuration Devices Datasheet,
http://wwwe.altera.com/literature/hb/cyc/cyec c51014.pdf

® Nios 32bit Programmers Reference Manual,
http:/ /www.altera.com/literature/manual/mnl nios programmers32.pdf

* Nios Avalon Bus Specification and Reference Manual,
http://www.altera.com/literature/manual/mnl avalon bus.pdf

= Nios UART Data Sheet,
http://wwwe.altera.com/literature/ds/ds nios uart.pdf

= Nios PIO Data Sheet,
http://www.altera.com/literature/ds/ds nios pio.pdf

= Nios Timer Data Sheet,
http://www.altera.com/literature/ds/ds nios timer.pdf

* GNUpro Users Guide,
http://www.altera.com/literature/ third-party/nios gnupro.pdf

* Nios Embedded Processor Software Development Reference Manual
http://www.altera.com/literature/manual/mnl niossft.pdf

Exploring the SOCkit Reference Design

Your SOCKkit board comes with the SOCKkit reference design and Nios software stored in the EPCS4 flash
device. After applying power to the board, the “MENU” and “SELECT” buttons can be used to select
various board functions on the LCD display. To explore or modify the design further, you will need to
open the reference design project files and software source code. These files are located on the SOCkit
data files CD. This CD contains the latest archived Altera project file (.qar), and the C source code. These
files should be copied to a project file in your PCs Altera Quartus II installation folder.

The SOCKit reference design blocks are coded in VHDIL.. VHDL is actually an acronym for an acronym!
It stands for VHSIC Hardware Description Language where VHISC represents Very High Speed

15

Integrated Circuit. For the reference design, VHDL was used to code logic circuit “blocks”, and then
graphical representations of those blocks (bdf files) were “stitched” together using Altera’s graphical
editor. This creates the top-level graphical “.bdf” design file (hierarchical design). Quartus II supports
VHDL, Verilog, and AHDL (Altera HDL). Verilog and VHDL are more “mainstream” and both are
standards in the design industry. AHDL is Altera’s own HDL syntax, and is very similar to ABEL.
AHDL is very simple to use and is still very powerful. AHDL is a good language to learn for those who
are just getting started in FPGA design and HDL. The details of this reference design are in VHDL (and
Verilog, as Verilog is the syntax that SOPC builder uses when generating design modules). Just keep in
mind that our reference design will show you from a top level how to put things together. The details of
implementation could be coded in any of the three HDLs (VHDL, Verilog, AHDL). The reference
design will give examples of how to utilize all the major features of Altera’s Cyclone FPGA, and will help
you avoid many of the pitfalls encountered when “starting from scratch”. The reference design utilizes all
the hardware peripherals which are provided on the SOCkit PCB and provides:

* High speed LVDS pattern generation and detection with byte error rate.
= 32 bit Nios processor supporting interrupts, timer, UART, and PIO.
* Nios software image store to EPCS4 flash device (select by LCD menu).

= Configurable Nios software boot using GERMS RS-232 monitor or EPCS4 image copy to
SRAM (configurable via dip-switch).

* Nios program execution from external 128K X 8 bit SRAM.
= EPCS4 nonvolatile flash data storage
= LCD menu operation

= LED test

Quartus Il Tutorial Instructions
After installation of your Quartus II web edition CD, it is highly recommended that you go through the
exercises contained in the Quartus II tutorial. The tutorial will help you to become comfortable with the
QII 3.0 development environment.

Launching QII:
® Double click the Quartus II shortcut (icon) found on the desktop of your computer.

® Allow the computer to search the Altera site for updates. This will ensure that you have the latest
copy of web edition.

® Under the Help menu on the top toolbatr, select tutorial.

® At the top of the tutorial window push the Next button this will take you through tutorial basics
and into the design sections.

16

Once you have completed the tutorial sections you will be ready to explore the SOCkit design.

Nios Shell Environment Basics
In order to build software loads for the Nios controller you will need to install the GNUPro C
programming environment. This is an install option on the Quartus II web-pack CD that comes with the
SOCKit (full kit).

A good place to start with the software is to first compile the existing C files that were provided with your
SOCKkit reference design. Before we get started, I would recommend that you download the following

document, http://www.altera.com/literature/manual/mnl niossft.pdf. Take a few minutes to scan over it.

This document contains all of the commands necessaty to build and run your software.

To begin, open a Nios SDK Shell This shell can generally be found under
/altera/excalibur/sopc_builder/”Nios SDK Shell” program directory. The shell will open a command
line window. Using the command line, navigate to the SOCKkit reference design directory and continue
down into the SRC directory. This is located at “Your path here/cpu_sdk/stc/sockit.c”. This is the
location for the Nios SRC files, so it is a convenient place to compile the SOCKkit design file. Below is a
few basic build commands and some options you might find helpful.

nb sockit.c

This command will compile the sockit.c design file. The output from the nb command is a .srec (S record)
file. This file is then used to download into memory on the PCB when running GERMS

nr sockit.srec

This command is used to download your compiled .srec file using the Nios GERMS monitor. Following a
successful download, GERMS will jump to the start of your software routines..

nr options
if you have trouble opening your com port or establishing a connection, here are a few options to try:
-p com2: This option instructs the nr command to use com port 2.

-b 19200: This option instructs the nr command to establish connection at 19200 baud. Any baud rate can
be used i.e. 4800, 9600 56K etc...

A typical nr command might be: nr sockit.srec (uses default com1 and 9600 baud), or the nr command
could look like this: nr —=p com2 —b 19200 sockit.srec (uses com2 and 19200 baud for download and
communication).

Another important note regarding building loads. If you are embedding a software load in an internally
defined ROM, you can find an example of this is boot.c which was embedded in the SOCKkit reference
design. There are two methods that can be used to do this. The first is by having SOPC builder actually
compile your software. This is done by assigning the contents of the ROM to your.c file. When using this

17

method SOPC will automatically build your.c file for the ROM location. The above method is the easiest
and is less likely to create trouble.

The second method is to compile your.c file externally in a sdk shell using the nb command. Then when
using SOPC Builder, assign the contents of the ROM to the .srec file that you just generated. This method
works as well as the above approach, but care must be taken when creating the .srec file. When you build
a .c file for a ROM you must tell the compiler where to place the code. Please refer back to the SOCkit
design. The Boot ROM was located at address 0x1000. You can verify this by opening SOPC builder and
looking at the “SYSTEM CONTENTS” window. When we created the ROM we assigned the contents
to the boot.srec file. Now when SOPC generates the NIOS core, it assumes that the boot.srec file was
built to the appropriate location. If this was not done and you are using the Boot ROM as your reset
location, then your software will not execute correctly. The basic reason is that boot.srec is likely at 0x0000
and not 0x1000. To correctly build an internal ROMs contents using the SDK shell, you must explicitly
tell the build command where to locate the code. In the case of boot.c, the build command looked like
this: nb —b 0x1000 boot.c.

SOCkit Board Block Diagram
An overall block diagram of the SOCkit design is shown below.

SOCkit Design
Dip Switches - [. 128K x &
LSEAT
Ivlenu f Select
Dehounce * MNios Frohedded
: =
iroui = w RES232
Coenit Controller :I
1 Millisezond M SLEDH
Clock
Generator
= . ' »| LVDS T Data
D5, T T Serializer TX Senalizer ;
i FLL Logic i » LVDS TX CLE

LVD5 BX Data | 4—m B Deserializer B Desetializer i

LVDSRX CLK | | FLL Logie

18

The SOCKkit design can be found in the top.bdf file of the SOCkit project directory. The SOCKkit
designs top level module was created using Altera’s schematic editor. The schematic allows the user to
create graphical block representations for sub-modules. These sub-modules can then be stitched together
using “wires” for connectivity. The SOCKkit Design is broken into three primary design sections, which
are: Nios Softcore, LLVDS Serializer, and LVDS Deserializer.

Nios Softcore and SOPC Builder

This section will describe the Nios softcore’s connectivity to the rest of the design and the actual
softcore’s setup and configuration using SOPC Builder. The Nios block symbol can be found at the top
middle of the SOCKkit’s top level schematic file (top.bdf). The Block symbol is labeled Nios, and like most
schematic symbols inputs are shown on the left and outputs are shown on the right. Below is a
description for each of the port pins found on the SOCkit’s Nios module. All Nios ports are defined from
the peripherals point of view (input/output). Keeping this in mind will help when adding your own
module interfaces to a Nios softcore.

INPUTS:

Clk: This input is the primary clock for the Nios controller. The clock will establish the operating
frequency for this design.

Reset_n: This is the active low reset signal that is used to reset the Nios softcore.

Data_from_the_byte_test_reg[31..0] : 32bit data-bus that is sourced from the byte_error rate test
module. This bus allows the Nios softcore to read data information from the sub-module.

In_port_to_the_dipswitch_bank[3..0]: Inputs are directly connected to the bank of four dipswitches
using PIO (programmable 10). The Nios softcore is able to read these switches and branch accordingly.

In_port_to_the_forward_button_pio: This input comes from one of the switch de-bounce modules.
This input is directly connected to an interrupt and is used to branch the software when this button is
pushed. The forward button is actually labeled MENU on your SOCkit board.

In_port_to_the_select_button_pio: This input comes from the other switch debounce module. This
input is also directly connected to an interrupt and is used to branch the software when this button is
pushed. The SELECT button is labeled on your SOCkit board.

Rxd_to_the_uart_1: Receive input from the external RS232 transceiver. This is connected to the Nios’
internal UART.

OUTPUTS:

19

A_to_the_cy7c1019¢cv33_asram[16..0]: This output bus connects the Nios softcore’s Avalon bus to the
external Asynchronous SRAM address bus. This gives Nios full access to the SRAM 128K x 8 memory
space.

D_to_and_from_the_cy7c1019¢cv33_asram|[7..0]: This is the bi-directional data-bus connecting Nios to
the external asynchronous SRAM.

Cs_n_to_the_ cy7c1019cv33_asram: External chip-select that allows Nios to select the Asynchronous
SRAM .

Oe_n_to_the_ cy7c1019¢cv33_asram: External output enable that allows Nios to select a read operation
to the Asynchronous SRAM

We_n_to_the_ cy7c1019cv33_asram: External write enable that allows Nios to select a write operation
to the Asynchronous SRAM

Out_port_from_the_byte_test_en: This output port is used to enable and disable the byte error rate
test.

Addr_to_the_byte_test_reg[3..0]: Address bus that is connected to the byte_error module. This bus
allows Nios to address several internal registers for reading.

Nios_cs_to_the_byte_test_reg: Chip select is connected to the byte_error module. This allows the Nios
to select the internal registers.

Nios_rd_to_the _byte_test_reg: Read enable is connected to the byte_error module. This allows the
Nios to setup a read operation for the selected internal registers.

Bidir_port_to_and_from_the_lcd_pio[10..0]: External Bi-directional port that is used to communicate
with the LCD display. The 10 bit bus is composed of 8 data bits, register selection control bit,
Read/Write control bit, and an enable signal.

Out_port_from_the_led_pio[5..0]: These outputs control the six external LEDs. These outputs are
used in a sinking manner. If a low is written to the port, the LED will illuminate. If a high is written to
the port the LED will not illuminate.

Out_port_from_the_pattern_sel[1..0]: This output port is connected to the lvds_patterns module. This
module allows the user to select between four unique LVDS output patterns. The selected pattern is then
serialized and transmitted using the LVDS data outputs.

Txd_from_the_uart_1: Output is connected to the external RS232 transceiver’s transmit pin.

In order to see the actual internal configuration for a Nios softcore, it is necessary to open it using
SOPC Builder. This is done by double clicking the Nios block symbol located in the top.bdf design file.
After double clicking the Nios block symbol, Quartus II will launch SOPC Builder. This will automatically
bring the user to the first page of SOPC builder which is labeled “SYSTEM CONTENTS”. Below is a
screen shot of SOPC’s “SYSTEM CONTENTS” page:

20

W pliera SOPC Builder - Mios

File System Module Yew Hebp

créents | Nios More "CPU” Settings | System Generation |
#3) ARera SCPC Bulder . . - [
5 bt L i Lo anget Device Fasily: [Cyclone w | System Cock Frequency: (33 MHT
Ehfimelion Moddulse = CPU { Instruction_mester (avaln)
® rhoz Processor - Abera — CPU J dais_masbar {avalon]
Bridges (= BEFTC_sram_biss (avaln_tristate)
+ EP1C20 Mios D Use HH| Mochfe [dsme] Descriton [Bae | Ew [
4 EPUSA0 Mo Developrmie: = || ['] Eceru i Processor - AbSra COMporation l |
1 EP1540 Whos Develop o —— germe e Mamary (FOAM or FOM) TedD000000| O+ CCI0TFF
+ EPZOKMSDE Hios Deualop 1= ; - [baat_rom On-Chip Memary (AWM or RO i 1
Ethernet | ~|—E wector_ram Or-Chip Werary (RAM or RO 00000 | LOLuarT |
[+ Math Coprocessors 4@ s TIRFT (Fa-252 senml fort) Tb000GE0n | GA000I0G1E | 16
= Mennony = S - - [E Torvkand_bamton_io P [P af alled WO DchDO0GEZ0, 000000825 | 17
b AMD 259 VOESD Pl |5 [+ salect_bulton_xo 0 [Parakel B0y (oD 00630 DG | 18
& AMD 2SLVEDD Flagt | | 19 - bed_pin B0 (Barnbed Tt =
& Active Serisl Memor |1 T heed_pber i [Foraie] 0 TaOO00EBEN| O LOO0ESF
& DTT DS SRAM & | -¢ =j— [dig by PI0) [Poraliel W) Mol NNaEED IJ!E‘IIJ‘E_?EF
& DT VAE SRAM | ¥ (5 pattern_gel P [Paradel B0 DD 003ESD QxDOO00E5F |
& Lagscy SDRAM Cor |53 < [& s Actve Sevisl Memory Ierfsce [T] QxCO000ETF | 18
& OrChig Mammory (R - [byle_test_en iy (Barale] o) [T IR]
& SORAM Cantraler [AT tyte_test_reg Trieriace 1o User Lagk TROBBOUACE | OA0C0EFE
& asyTo stam (Cypee | _i.__ —1— E asyme_sran_bas Zraion Ti-caole Erige |
4 Microcontroliers | T :lenlﬂ Acudi_asram (AT sram (Cypress oy el 0 90wES (126K < a3y | DadDO2RDD| 0xDODGEFFF
= other
® Dna s |
i | Li.
Al Availabls I:_pmp-ui-_n_u
o [BTH] O]
| @ cneck | & Movalp | w Wove Down
| 1) Dionw chacking For Lpdates.,
Et Hest = Ganersle

This window is used to add all Nios interfaces, and allows the user to select the targeted device family, i.e.
Cyclone, Stratix etc. Also found on this window is the system clock frequency. This needs to be set to the
same frequency as the clock that will be input to the Nios modules clock input. This is particularly
important when using the Nios internal UART, as this clock will be used to establish the count values
necessary to configure the RS232 baud-rate. The “SYSTEM CONTENTS” page lists an entry for each
component found in the Nios softcore. Next to each entry is the assigned memory space and IRQ (if
applicable). The left side of the screen contains a list of peripherals that can be added to your design.
These “ready to use” modules include UARTS, PIOs, memory interfaces etc. A basic set of the modules
have been included with SOPC, however, other modules may have to be purchased as IP (Intellectual

Prorperty).

Most of these modules reside in the SOPC installation directory, and are Altera “.ptf” files. Most basic
interfaces can be generated using the “INTERFACE TO USER LOGIC” SOPC wizard located at the left
of the screen. Sometimes, for advanced functions, .ptf files have to be generated manually. For more
information on .ptf files please refer to the following document:

http://www.altera.com/literature/manual/mnl sopcptf.pdf

One last item to note is the “matrix” type format of the main SOPC builder screen. Nios basic
components (instruction master, bus master, Avalon bus) are shown across the top of the screen. These

21

basic Nios architectural components are connected to internal (to Nios block) and external peripherals by
“closing the dot”” on the column/row matrix that comprises this main SOPC builder screen.

The second window in SOPC builder is labeled “NIOS MORE CPU SETTINGS”. This window is used
to define where the Nios softcore will begin execution and what memories will be used for different tasks.
These tasks include interrupt vector storage, data memory and program memory. This window is also used
to define UART assignments and Reset location. A system Boot ID can also be set here. This Boot id will
be displayed at power-up via GERMS and an RS232 monitor if one is present.

The third and final window found in SOPC Builder is the “SYSTEM GENERATION” window. This
window allows the user to select file generation options for the Nios build. Here the user can select to have
header files and libraries generated during the build. Other selections include a HDL output option and a
simulation option.

Once you have completed your selections using the three SOPC windows, select the generate button and a
new Nios Softcore will be created. For more information regarding the use of SOPC builder please refer
to the following hyperlink:

http://www.altera.com/products/software/system/products/sopc/sop-index.html

Nios Memory Organization
The memory structure found in the SOCKkit design was chosen to allow system branching based on user
inputs. This section will define the memories used in the SOCKkit design. Refer to the actual design files
for details.

SOCkit Memory Map:
Module Name Address Range Assigned
IRQ

GERMS (monitor) ROM | 0x00000000 — 0x000007FF

Boot ROM 0x00001000 — 0x00001FFF

Vector RAM 0x00000900— 0x000009FF

UART 0x00000800 — 0x0000081F 16
Menu PushButton 0x00000820 — 0x0000082F 17
Select Push Button 0x00000830 — 0x0000083F 19
LCD Interface 0x00000840 — 0x0000084F

LED interface 0x00000850— 0x0000085F

22

Dip-switches 0x00000880 — 0x0000088F

Pattern Select outputs 0x00000890 — 0x0000089F

ASMI (Flash Interface) 0x00000860 — 0x0000087F 18

Byte test enable control 0x000008A0 — 0x000008AF

Byte Error Interface 0x000008C0O — 0x000008FF

Async. SRAM Interface 0x00020000 — 0x0003FFFF

The SOCKkit design uses three internal memories, and two external memories. The three internal memories
are:

GERMS (monitor) ROM: The monitor ROM is an internal memory that stores Altera’s GERMS ROM
monitor. 'This monitor program provides basic memory peeks/pokes, and to opetrates the RS232
terminal. Any internally defined RAM/ROM can be initialized as a GERMS ROM using SOPC buildet.
To add GERMS, select the GERMS button under the “CONTENTS” window of the on-chip memory
module (during the adding of the memory to the SOPC design, or afterwards by double-clicking on the
RAM/ROM entty).

Boot ROM: This internal ROM is located at the RESET location of the SOCKkit design. The source file
for this ROM can be found in the SOCkit project directory /cpu_sdk/stc/boot.c. This file will either load
the user program from the EPCS4 flash device or will branch to GERMS. This selection is determined by
the setting of S3 dipswitch 1. If dipswitch 1 is set to “0” (on position), the design will branch to GERMS,
thus allowing user debug or program download. If dipswitch 1 is set to “1” (off position), the SOCkit
design will load its program memory using the design stored in the flash device. Loading the Flash
memory with user programs will be discussed later in the booter section of this manual.

Vector RAM: This internal ram is used for the interrupt vector table of the Nios Softcore.

ASMI (Flash Interface): This external flash is unique to Altera’s Cyclone family. The EPC device found
on the SOCkit design is a 4Mbit device (4,194,304 bits). This device uses a dedicated FPGA serial
interface for communication with the Nios softcore. The EPCS4 is not only used for Cyclone device
configuration, but can also be used for program store (user data).

Asynchronous SRAM Interface: This external memory is used for both program and data store. This
memory can be loaded at boot-up by the boot ROM if dipswitch 1 is set to the off position. The user
program is transferred from the EPCS4 to the SRAM and then executed. It is possible to use the Cyclone
FPGA’s own internal memory for program and data store, however, the user will have to be very diligent
not to exceed the available memory size, especially when coding in C.

Actual program data size is very important, especially when working with smaller internal memories. The
boot ROM executes a small piece of code at power-up. You, the designer must define this memory as a
ROM. ROMs are always defined as initializable memories, meaning the actual FPGA load provides the

23

memories initial contents. It has been observed that the smallest S record size will be produced by the
Nios assembler. The Gnu C compiler tends to produce much larger record sizes, and therefore requires
larger memory devices.

LVDS Serializer
The LVDS Serializer found on this reference design is a rather simple approach to data transmission. The
basis of the LVDS design is a separate data and clock channel utilizing the two Cyclone EP1C6 PLLs and
a reference input frequency of 24 MHz.

There are two version of the SOCKkit reference design. The difference between these two versions is the
speed grade of the Cyclone EP1C6. The speed grades available for the SOCKkit designs are the —6 and —8
FPGA devices. The —0 is a faster device. For details regarding the actual timing differences please refer to
Altera’s Cyclone Handbook Chapter 4.

Below is a table showing the differences between the two design PLL configurations per the devices speed
grade. The input clock frequency for both design versions is 24 MHz.

EP1C6 Speed Grade: -6 -8

System PLL Multiply/Divide | 13/8 = 39MHz. 4/3 = 32MHz.
Ratio and resulting frequency

Data PLL Multiply/Divide Ratio | 13/1 = 312MHz. | 32/3 = 256MHz.
and resulting frequency

For the —6 version of the SOCkit development board, the data transfer PLL is configured for a 13/1
multiplier, which results in a 312 MHz serializer clock. Our design works on byte boundaries and as a
result the data transfer serializer has to run at eight times our system clock. The system clock is generated
from a 13/8 multiplier which results in a system frequency of 39 MHz. Thus the serialized data rate for
our —6 reference design is 312 Mbs.

For the —8 version of the SOCkit development board the data transfer PLL is configured for a 32/3
multiplier, which results in a 256 MHz serializer clock. The system clock is generated from a 4/3
multiplier which results in a system frequency of 32 MHz. Thus the serialized data transfer rate for our —8
reference design is 256 Mbs.

In the reference design the serializer circuit is located at the bottom of the top.bdf schematic file. The
entire circuit is comprised of the TX PLL (discussed above), lvds_patterns (VHDL module) and a five
stage pipeline. The lvds_patterns module contains an eight bit shift register, a pattern generation state
machine, and a synchronization circuit. The pattern generation state machine operates at the system clock
frequency. This state machine is controlled by the Nios softcore. The state machine input is labeled
pattern_sel[1..0] in the top.bdf file. These inputs select the output data pattern the state machine will
generate. The table below shows the output state (sequences repeatedly from 0 to 7), pattern_sel inputs,
and the corresponding output pattern.

Lvds_patterns Pattern_Sel Setting
Output State

00 01 10 11
0 00 00 00 55
1 00 01 55 55
2 00 02 AA 55
3 00 03 FF 55
4 00 04 00 55
5 00 05 55 55
6 00 06 AA 55
7 00 07 FF 55

You can see that when the control inputs are set to 00, the LVDS pattern output will be continuous zero.
When the control inputs are set to 01, the LVDS pattern output is a repeating count of zero through
seven. When the control inputs are set to 10, the LVDS output pattern is a repeating pattern of 00, 55, AA,
FF. This pattern is also used to run the byte error rate test (covered in a later section). When pattern_sel is
set to 11, the “55” pattern gives us a constant alternating O to 1 transition on our high speed serial data
output (01010101).

The synchronization circuit was added to insure that the x8 load counter was synchronized to the slower
system clock. This circuit operates as a one shot which becomes true only after the first rising edge
transition of the system clock. After the one shot becomes true an internal counter will begin running.
This counter operates at the faster x8 frequency. Its function is to count eight cycles of the x8 clock, reset
to zero and issue the load signal. The load signal drives the load enable on the shift register. This
mechanism places the selected pattern data in the shift register where it is then serialized at the high
frequency data transfer clock rate.

Now that the selected pattern data has been serialized, it is necessary to send this data through an output
pipeline. The pipeline was used to make sure the transmit circuit operates on an even byte boundary. The
pipeline ques the x8 serialized output so that data transmission starts on an even byte boundary right at the
transition of the slower system clock. This is necessary, to insure that the high speed data receiver samples
data on a system clock transition boundary (provides byte aligned data at the slower system clock speed).

LVDS De-serializer and Byte Error Test
Like the serializer, the de-serializer circuit is labeled and easily identified in the reference design. The circuit
contains a PLL, shift register, 2 to 1 multiplexer, and the byte_error vhdl module. The receive PLL is

25

configured to generate a x8 multiple of it’s input clock. The de-serializer PLL input clock is connected via
the fire-wire patch cable to the serializer transmit clock. This clock has a frequency of 39 or 32 Mhz,
depending on the Cyclone FPGA speed grade. Using the slower frequency clock as the transmit clock
allows transmission of a slower clock, which is then multiplied up again on the receive end. Thus based on
our input frequency, the x8 frequency on the receive end will be either 312 MHz or 256MH.

At the input of our de-serializer design we have placed a single flip flop to register the high-speed serial
data. We have also turned on the Quartus II “fast input register”” constraint for this input. This will place
the initial input register in the IOB of the FPGA. Doing this allows us to register the input right at the
edge of the FPGA and thus increases our setup time margin. Once data has been clocked into the de-
serializer block, the shift register megafunction begins shifting serial data in and then presenting byte
aligned data to the parallel_reg megafunction. The byte wide interface runs at our slower system clock
frequency. From this point on, in our design, byte wide data (slower data rate) is presented to the
lvds_mux multiplexer megafunction. The multiplexer has two byte wide inputs, one input is our de-
serialized data. The other has been fixed to VCC. The purpose for the multiplexer is to allow generation
of test errors for the byte_error module. This will be discussed in more detail later. From the multiplexer
data is presented to the byte_error VHDL module.

The byte_error vhdl module was designed to detect errors found on the serialized LVDS data path. For
the purposes of this reference design the only pattern supported for the byte error rate test is the pattern
“007, 557, “AA”, “FF” which repeats. By using a compare state machine, the “00” pattern is the test
starting point and then subsequent patterns are read in and compared. If the pattern deviates from the
expected pattern, the byte_error counter is updated. Otherwise, the byte counter is updated (no error). In
this manner we are able to report total bytes received, as well as total errors detected. Reporting is
implemented through the Nios interface connected to the error detection module. Several inputs control
the operation of the byte_error module. One of these is the byte_test_en input which controls how the
state machine will operate. If this input is zero the state machine will be held in the idle state. Otherwise,
the machine will be processing byte errors. The other input to this module controls the multiplexer
inputting data to the module. This input comes from dip-switch S3 switch[4]. If this switch is set to zero
(on), receive data is presented to the byte_error module. If this switch is set to one (off), data presented to
the byte_error module will be stuck high (VCC). This method is used to introduce byte errors into our test
to verify proper operation. To use this function, you must first start the test with S3 switch[4] in the on
position to allow synchronization, and then to inject errors, turn switch[4] off.

SOCkit Software Description
The best way to investigate the SOCKkit software structure is to view the source code. For the benefit of
new programmers that are learning, the following program flow description paragraphs will clarify things a
bit. Refer to the actual sockit.c source code while reading these sections.

The Majority of the LCD functions used in the SOCKkit reference design are provided in Altera’s Nios
Development Kit (Cyclone edition). These functions have been included in the SOCKkit design files. The
Nios core used in the reference design is not time limited, however, subsequent recompiles of this design
using the web edition tools will result in a time limited version of the Nios core (web-pack has trial version
of SOPC builder).

The Software reference design that was included with your SOCkit development board can be found in
“CPU_sdk\stc” ditectory. The source file is the sockit.c file. This is the main file for the reference design.

26

The following section will step through the main structure of the sockit.c design file (for the benefit of
student programmers).

The top of the file contains include statements, function declarations, and variable declaration. Scroll down
to the comment “Message to germs”. The two printf statements following this comment are the first
Output of the SOCKkit software design. To see these comments displayed, open a Nios SDK shell and
type nr —t. If you have your PC RS232 cable connected to the 9pin D-Sub on the PCB, you should see the
comments directly after power-up or following assertion of the RESET button. The next two sets of
instructions setup the MENU and SELECT pushbuttons for interrupts. Continue down to the comment
“Design Starts Here”. The first function call is to initialize the LCD. Next we begin displaying our initial
message. This portion of the code displays a static “Dallas Logic” on the top line of the 16x2 L.LCD, while
the bottom line operates like a marquee, scrolling a message across. This portion of code will run
continuously until the MENU pushbutton is pressed. Once the MENU button is pressed the LCD will
display the first line of our main menu. Scroll down to the comment “ Main Menu Starts Here”. The
menu is made up of four entries which include: LVDS Pattern Selection, LVDS Byte Error Test, LED
Test, and Flash RAM to EPC. These entries are grouped in a single while loop that runs continuously.
The menu can be advanced using the MENU pushbutton. As the menu is advanced the LCD will update
with the new menu selection. To run a given menu selection, press the SELECT pushbutton. This will call
the function contained in the menu entry. Once completed the function will return to the entry called.

The menu was created using a case statement with four entries. The MENU button using an ISR
advances through the menu entries. The forward_isr is located immediately following our menu while
loop. The forward_isr is the MENU button’s interrupt service routine. This ISR works by updating the
screen variable that controls the menu’s case statement. The ISR updates this variable with every press of
the MENU button. It has also been designed to jump back to the first entry if the MENU button is
pressed on the fourth entry. If the first entry in the menu is selected, the forward_isr branches to a
secondary variable update. This second variable update routine allows the user to advance through the
LVDS Pattern Selection menu. The sub-menu entries include: “All Zeros”, “01 23456 77, “00 55 aa £,
and “55”. Like the previous menu pressing the SELECT button will select a data pattern and return back
to the previous menu entry. Note: the program will remain in the forward_isr until a selection is made.

Immediately following the forward_isr is the select_isr. The select isr is mapped to the SELECT
pushbutton found on the SOCKkit design. Every time the SELECT button is pushed the Nios controller
will automatically call this interrupt service routine. The select_isr works by setting a global flag that
indicates the button was pushed. Itis then up to each function to branch accordingly and clear the global
flag when done.

Below the select_isr you will find three additional LCD control functions. These were added to expand on
Altera’s LCD functions included in the Nios Development Kit Cyclone edition. The three functions are
listed below with a brief explanation of each:

nr_pio_lcd_marquee — This function sets up a scrolling message across the second line of the 16 x 2
LCD. This function is used at power-up and the start of the SOCkit software run. Immediately following
reset or power-up you can see the function scrolling on the LCD.

nr_pio_lcdwritescreen_top — This function only writes to the first line of the 16 x 2 LCD. Any
characters that exceed the display length are cut off. The SOCkit’s LCD display length is sixteen
characters.

27

nr_pio_lcdwritescreen_bot — This function only writes to the second line of the 16 x 2 LCD. Any
characters that exceed the display length are cut off.

Following the additional LCD functions is the led_test function. This function is called when the fourth
entry in the Main LCD menu is selected. This function repeatedly illuminates each LED until the MENU
button is pressed again.

The lvds_test function is a branch function from the main menu’s second selection “LVDS Pattern
Selection”. Once executing in the lvds_test function, the user must select one of the patterns. Pattern
selection is done by using the MENU button to advance the selections. Once the pattern to be used is
displayed, use the SELECT button to begin transmitting that pattern. Like the Main Menu section
described above, the Ivds_test menu interrupt operation operates the same way. That is the forward_isr
updates the lvds_screen variable. This controls which of the lvds_test selections is displayed on the LCD.
The test patterns were defined to allow the user to view a variety of data from the de-serializers data output
bus. This bus can be viewed using a Logic Analyzer. Once a pattern is selected the function returns to
the main menu.

The byte_test function is used to report the byte error test results that are being generated in the
byte_error VHDL module. The byte_error VHDL module has a Nios interface which allows byte_test to
read the update registers and report them using the LCD. The function will continue to run until the
MENU button is pressed.

The last function used in the SOCKkit design is flash_epc. This function was designed to write the contents
of the onboard 128Kx8 Asynchronous SRAM to the EPCS4 serial flash device. This function is designed
to use the Altera’s ASMI nr_asmi_write_buffer routine to write 256 byte blocks, 512 times to the
EPCS4. The target location in the EPCS4 is the two highest 64K flash blocks. This function is called
from the main menu under the selection “Flash RAM to EPC”. Once selected the last two flash blocks
are erased, then the entire 128K x 8 external SRAM contents will be copied to these two flash sectors. On
the next PCB power-up, the new user program will automatically be copied to 128K x * SRAM from
flash and executed. This copy routine will be discussed in the Boot program section below.

Boot Flash to SRAM Copy Program
The Cyclone EP1C6 has 11.52 Kbytes of total ram. For small embedded applications this RAM size
maybe sufficient. However, for applications requiring larger program storage, it becomes necessary to add
external memory storage. What the SOCKkit design example emphasizes is a lower cost FPGA coupled
with an external SRAM for larger program store and a simple way to load it. The SOCKkit design uses
Altera’s EPCS4 flash configuration device. The EP1C6 (Cyclone FPGA) requires a configuration size of
1.16 Mbits. By subtracting the configuration size from the flash device size, we end up with 3.02 Mbits.
After dividing this by eight (for bytes), the flash device has approximately 378K bytes remaining for our
data use. Altera has designed several functions that allow users to access this spare flash space. It is in this
flash space that the SOCkit design stores its program and/or data. In the previous section, we discussed
the flash_epc function. This function is used to write the contents of RAM to Flash. The Boot program
we now discuss performs the opposite function. Its purpose is to copy from Flash to external 128K x 8
SRAM (usually at initialization).

28

The boot.c reference program that was included with your SOCkit development board can be found in
the CPU_sdk\stc directory. The source file we will review is the boot.c file. Boot.c is the first program
that Nios executes after power-up or reset. If you open SOPC builder and review the “MORE NIOS
SETTINGS” window, you will see that our RESET location is defined to be memory location 0x1000.
Now open the “SYSTEM CONTENTS” window, and you can see that the Boot ROM is located at
address 0x1000. One more item to note in the “SYSTEM CONTENTS” window is that the GERMS
ROM is located at address 0x0000. By placing the GERMS routine into one of the onboard memories,
Boot.c will be able to jump to GERMS if a user download is required (selected using dip-switch).

The S3 dip-switch setting will determine if the boot.c flash copy routine will execute or if we jump to
GERMS. If the dipswitch is placed in the “on” position, the boot sequence will jump to load GERMS. If
the dipswitch is placed in the “off” position the flash copy routine will be executed. Once the copy is
completed, program execution will begin at the first location of the external SRAM..

Boot.c can provide an initial boot to GERMS to perform a program download. Once execution begins
the sockit.c program provides a “RAM to EPC” function that will copy the downloaded program stored
in external SRAM (itself) to the EPCS4 flash. This provides for permanent storage of a user software
program in flash. Future versions of Quartus II will hopefully support integrating of FPGA initialization
images with software executables directly into the EPCS4 flash device. This is normally done with the
Quartus 1T “CONVERT PROGRAMMING FILES” menu selection. The EPCS4 is not yet supported
by this function.

The flash copy routine uses Altera’s ASMI nr_asmi_read_buffer function. This function is designed to
read from the EPCS4 in a user defined block size. In the Case of the boot.c file, a 128 byte buffer size is
used. The copy function stays in the while loop until the prom_end address is reached. Once the
prom_end address is reached, the program drops to a small embedded assembler routine that jumps to
and starts executing from SRAM.

29

LCD Menu Operation Flowchart
Following power-up or Reset, the SOCKkit design will begin running the initial marquee message. Pressing
the MENU button will advance to the main menu. Below is a flow diagram for the LCD menu system.

Diallaz Logic
S0Ckt Cyclone Developroent Board Press Ilenu Button.

Initial Blarguee ——— 4

message
FPress
WIEMU Button
Fressing the MENU — I'7 ype pojiery LVDS Byte Enror | | LED Test Flash RAM to EFC
hutton selects hetween .
R Selection Test
| [[[
R L e e I R]
Press Press Press Preas

SELECT Button SELECT Button SELECT Button SELECT Button

Exeoute Exeoute Exeoute
Bote Error Test LED Test Flash F.&N to EPC
Press
or RENT Button
Pressing the MENT
hntton selects hetween Select Pattern Select Pattern Select Pattern Select Pattern
these four screens A1 Feros 01234567 00 55 aa ff 55
I [¥ [[
IR o e e A R]
Press Press Fress Press

SELECT Button SELECT Button SELECT Button SELECT Button

| | | |

Selected Pattem repeatedly transwitted over LYDS data outp

The main menu consists of four menu entries, LVDS Pattern Selection, LVDS Byte Error Test, LED Test
and Flash RAM to EPC. Pressing the MENU button will advance through these menu entries. To select
one, press the SELECT button while the entry is displayed. In the case of the LVDS Byte Error Test,
LED Test, and Flash RAM to EPC, pressing the SELECT button will execute the displayed function. The
user will then have to press the MENU button in order to return to the main menu entries. In the case of
LVDS Pattern Selection, pressing the SELECT button will advance the user to the Pattern Selection sub-
menu. There are four sub-menu entries. They are: Select Pattern All Zeros, Select Pattern 0123456 7,
Select Pattern 00 55 AA FF, and Select Pattern 55. Pressing the MENU button will advance through
these menu entries. To select one, press the SELECT button while the entry is displayed. This will begin
transmitting the selected pattern continuously to the LVDS data output. Once a pattern has been selected
the user will be returned to the main menu. The user is always returned to the entry in the main menu that
was originally selected. Modifying the FPGA pin definitions and then initiating a Quartus II compilation
changes which pins, and thus the associated header the LVDS patterns will be output to and received on.

30

Reference Design Schematic
The SOCKkit schematic should be referenced for details on circuit design or when connecting devices to
the supplied pin-headers. The schematics .pdf pages are located on your SOCKkit reference design and
data files CD.

SOCkit Board Technical Help

Being an “internet-centric” company, Dallas Logic provides manned 24hr email and web forum support.
The best way to obtain help with problems is to post questions to our online support forum. We are
prompt about replying, and there is also a good chance you will find your question has already been
answered online in the forum. If you prefer email support, we can be reached at
supportt@dallaslogic.com. We will generally reply within 24hts of receiving an inquity or request for help
with problems which are related to the operation of your SOCkit board. Before contacting us with
inquiries, please make sure you have:

1. Verified the fuse (FF1) and checked the voltage outputs at connector J1.

2. Removed any test circuits from connection to the SOCkit PCB and restored it to its original design
state (remove and restore any modifications).

3. Re-programmed and tested your SOCkit board with the original reference design files.

For questions related specifically to Altera software tools or FPGA devices, we can sometimes be of
assistance, but will generally refer you to the Altera online knowledge base or online support web pages.

Warranty Information

Your un-modified SOCKkit assembly is guaranteed to be free of defects in material and workmanship for a period of ninety
days from the date of purchase. If your SOCkit board stops working during the ninety day period, and is in its original, un-
modified state, first contact us at support@dallaslogic.com. If the problem cannot be resolved, you must return the PCB
assembly and power supply, postage prepaid to Dallas Logic Corporation. All repairs and return ship will be made within
12 days of receipt of package. During the warranty period, Dallas Logic will, at its option, repair, replace, or refund the
purchase price. Products that have been damaged or modified from their original design state are not covered by warranty.
No warranty is implied with respect to the software or firmware files.

Disclaimer

Information in this document concerning the devices, applications, or technology described is intended to suggest possible
uses and may be superseded. Customers are advised to obtain the latest version of device specifications before relying on
any published information. Dallas Logic Corporation DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DATA FILES, DEVICES, OR TECHNOLOGY described in
this document. Dallas Logic Corp. also does not assume liability for intellectual property infringement related in any
manner to use of information, devices, or technology described herein or otherwise. Dallas Logic Corp. makes no warranty
of merchantability or fitness for any purpose and does not assume liability for damages incurred to property due to the use
of this product or implementation of information or procedures listed in this document. Use of information or technology as
critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this
document under any intellectual property rights.

31

