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Preface 

This digital filter design book is addressed to the mathematician, scientist, or 
engineer who has an understanding of continuous-time signals and who has 
been introduced to discrete-time signal analysis. 

The main topic of this book is the frequency-domain analysis and design 
of linear, constant coefficient, digital filters. The book is divided into two 
major parts: finite-duration impulse-response (FIR) filters and infinite-duration 
impulse-response (IIR) filters. Each part consists of a complete, self-contained 
treatment of the corresponding filter type. All aspects of each filter type are 
discussed. Each part begins with a discussion of filter properties, which leads 
into material on design of the filter to meet frequency-domain specifications. 
This aspect of filter design is called the approximation problem and makes up a 
major portion of the book. Each of the two parts concludes with a chapter on 
implementation of the filter with fixed-point arithmetic-the realization pro- 
blem. The chapters on implementation both include a detailed design example 
that presents a step-by-step design and implementation of a typical filter. The 
design examples begin with the frequency-domain specifications for the filter 
and conclude with a listing of the assembly language program for implementing 
the filter on a signal-processing chip (the TMS32010 from Texas Instruments). 
The book begins with an introductory chapter that reviews the concepts of 
frequency-domain analysis of discrete-time systems and states the major 
problems in digital filter design. The final chapter summarizes the main results 
in the book with a discussion of the unique characteristics of the FIR and IIR 
filter types. An appendix with listings of ten FORTRAN programs for filter 
design is included. 

This book may be used in several ways. For some applications one might 
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turn to the appendix, run the appropriate design program to get the coefficients 
of a filter that meets given frequency-domain specifications, then turn to the 
listing in the design example, insert the coefficients in the listing, and run the 
program on a TMS32010. If all goes smoothly in this process, one may not need 
to read and completely understand the theory in the book. However, if, as often 
happens, the problem one is faced with is not exactly covered by the programs in 
the appendix, then with some reading of the theory, one can probably modify 
the appropriate design program or write a special program to obtain the 
appropriate filter coefficients. Even if the coefficients can be obtained from a 
program in the appendix, the implementation in the design example may not be 
exactly what one wants. For example, the filter may take too much time to 
execute or may require too much memory or may have undesirable quantization 
effects. Again, some time spent in reading the theory in the chapters on 
implementation should allow the reader to develop an appropriate implem- 
entation of the desired digital filter. 

This book would not have been written without the support and encourage- 
ment of Texas Instruments, Inc. We would especially like to thank Mike Hames, 
who has always been ready with a smile and a helping hand when all of us 
realized just how much work is involved in writing a book. Maridene Lemmon 
has continued to patiently correct and improve our writing styles and has 
carefully read through countless revisions of the manuscript. The engineers at TI 
have read early versions of the text and helped correct our errors. 

We would like to thank Professor H. W. Schiissler who helped us begin to 
understand the issues in digital filter implementation when he was on leave at 
Rice University. Some of our examples are taken from his notes. We would like 
also to thank Cole Erskine for working out the two detailed design examples 
and for providing the necessary TMS32010 code. Jim Kaiser and Dick Roberts 
provided us with very thorough reviews of the manuscript and made several 
good suggestions, which we have incorporated in the text. 

We appreciate the long hours of reading put in by our graduate students 
Doug Jones and Henrik Sorenson, who have made many good suggestions for 
improving the book. Thanks also is given to the students at Rice University in 
our digital signal-processing courses who have helped us develop this book over 
the years. 
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Part I 

Introduction 





Introduction to Digital Filters 

Digital filters, at first, were simulations of analog filters on general-purpose 
computers. As computer technology provided faster multipliers, more memory, 
and good analog-to-digital converters, some of these computer simulations were 
implemented in special hardware to replace the analog filter. These early digital 
filters were large, expensive, and consumed considerable power. Nevertheless, in 
applications where the flexibility and programmability of a digital filter could be 
put to good use, and where cost, power consumption, and volume were not 
major considerations, a digital approach to filtering was sometimes superior to 
conventional analog filtering. 

In the late 1960s and early 1970s, at a series of IEEE-sponsored Arden House 
workshops, it seemed that there was always a talk comparing analog and digital 
filters. Leaders in the field expressed the opinion that although digital filters cost 
too much, were too large, and/or used too much power, they offered the 
following advantages: 

1. Programmable (filter characteristics easily changed) 
2. Reliable and repeatable 
3. Free from component drift 
4. No tuning required 
5. No precision components, no component matching 
6. Superior performance (linear phase, for example) 

These talks comparing analog and digital filters would inevitably end on an 
optimistic note, predicting that in two years, at the next Arden House meeting, 
digital technology would have advanced enough so that digital filters would be 
the better choice for most applications in the audio-frequency range. These 
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predictions were made over a period of several years. While digital processing 
was becoming faster and less expensive, analog filter technology was also 
making advances. 

In the 1980s, very large-scale integration (VLSI) developments have dramat- 
ically reduced the cost and power consumption of digital filters and have led to 
much more widespread application of digital signal processing. Digital filters are 
even finding their way into the home in compact disk players and television sets. 

This book has four major parts. Part I (this chapter) contains an introduction 
and reviews the concepts of linear discrete-time systems, frequency response, 
and filtering. Descriptions of the approximation and realization problems for 
digital filters are also included along with a discussion of FIR (finite-duration 
impulse-response) and IIR (infinite duration impulse-response) designs. Parts 11 
and I11 form the main body of the book. Part 11, in Chapters 2 through 5, gives a 
complete treatment of the properties of FIR filters, the approximation problem 
for linear-phase, minimum-phase, and complex designs, and the implementation 
of FIR filters with fixed-point arithmetic. Part 111, in Chapters 6 through 8, 
treats properties, design, and implementation of IIR filters. Each part concludes 
with a design example that gives a step-by-step design, beginning with the 
specifications and concluding with an implementation on a Texas Instruments 
TMS32010 signal-processing chip. 

The design examples provide details of the design and implementation of 
typical low-pass filters, including assembly language programs for the 
TMS32010 digital signal processor. FORTRAN programs are supplied in the 
appendix for designing both FIR and IIR filters. Part IV contains a concluding 
chapter on the various merits of FIR and IIR designs and compares character- 
istics of these two filter types. 

1.1 PROPERTIES OF DISCRETE-TIME SYSTEMS 

A discrete-time system takes an input sequence of numbers and produces an 
output sequence of numbers. These number sequences are often samples of a 
continuous function of time, where x(n) represents the signal x(t) at equally 
spaced times t, = nT-hence the name discrete-time. To simplify the discussion, 
we let T = 1, unless otherwise specified. 

The box labeled S in Fig. 1.1 represents a discrete-time system with input x 
and output y. When the input xl(n) gives the output yl(n), and x,(n) gives y,(n) 
the system S in Fig. 1.1 is called linear if the linear combination of the inputs 
a,x,(n) + a2x2(n) produces the output a,y,(n) + a,y,(n) for any choice of 
constants a ,  and a,. 

The system in Fig. 1.1 is called stationary or time invariant when 

X ,  (n )  I System S I - y ,  (n )  

implies that 

x ,  (n  - m) - 1 System S I - y ,  ( n  - m) 
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1 System S I y 

FIGURE 1.1 . A discrete-time system. 

for any time shift m. The system S is stable if the output y(n) remains bounded for 
any bounded input signal x(n).  The discrete-time system S is called a digital 
system if the input .u(n) and output y(n) can assume only a finite number of 
possible values or if x(n)  and y(n) are quantized. 

1.2 LINEAR, STATIONARY, DISCRETE-TIME SYSTEMS 

The analysis of a linear system consists of the following three steps: 

1. Resolution of the input into simple components 

2. Calculation of the system response to these simple components 
3. Superposition of the responses 

For time-domain analysis of a discrete-time system, the simple components are 
shifted unit-sample functions 6(n  - m), also called a digital impulse or unit-pulse 
signal, where the unit-sample function 6(n)  is equal to unity at n = 0 and is equal 
to zero elsewhere, as shown in Fig. 1.2. The three steps in the analysis are as 
follows: 

1. The input is resolved into shifted unit-sample functions, 6(n), weighted by 
the value of the signal where the unit-sample function is located, as indicated in 
Fig. 1.3. 

x(n) = x(m)b(n - m).  (1 .1)  
rn 

FIGURE 1.2 .  The unit-sample function 
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Signal 

Shifted unit-sample functions 

FIGURE 1.3. Resolution of a signal into unit-sample functions. 

2. The response of the system to a unit pulse located at the origin is called the 
unit-pulse response h(n). When the system is stationary, the response to a shifted 
unit pulse 6(n - m )  is simply the shifted unit-pulse response h(n - m). 

3. Superposition is used to add the individual responses. 

y(n) = C x(m)h(n - m). 
m 

(1.2) 

In (1.2),  h(n - m )  is the system response to a unit-sample function located at time 
m, and x(m) is the actual input value at time m. The summation of output 
components in (1.2) is called discrete-time convolution or simply convolution. 

A causal system has a unit-pulse response that is zero fur n < 0, and the 
convolution in (1.2)  becomes 

or, with a change of variable, 

OU 

y(n) = C h(m)x(n - m). 
m = O  

The summations in (1.3) and (1.4) assume the unit-pulse response has infinite 
duration; that is, the filter is an injinite-duration impulse-response ( IIR)  filter. If 



1.3 Frequency Response and Transfer Functions 7 

the unit-pulse response of a causal system is zero for all n > N - 1, the 
convolution in (1.4) becomes 

and the filter is called a finite-duration impulse-response (FIR) filter. 

1.3 FREQUENCY RESPONSE AND TRANSFER FUNCTIONS 

If the input to a causal, linear, stationary system is a complex exponential with 
- frequency o, 

Then by (1.4)  

When the summation over m on the right side of (1.7) is written 

then the response y(n) to an exponential input at frequency w is 

Thus, H ( o )  describes the change in magnitude and phase at the frequency o- 
hence the name frequency response. 

If the input x(n) is a real-valued signal 2 cos(on) ,  it can be written as the sum 
of two complex exponentials: 

x(n)  = i o n  + - jwn 

and the output is 

y(n) = H(w)ejwn + H*(w)e-j"", 

where H * ( o )  is the complex conjugate of H(w) .  
Letting IH(o)l and 8 ( 0 )  be the magnitude and phase of H ( o ) ,  respectively, we 

can write 
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FIGURE 1.4. Frequency response of a linear system. 

As indicated in Fig. 1.4, the input cosine signal experiences an amplitude change 
according to the magnitude JH(o)l of the frequency response and a phase shift 
according to the phase O(o) of the frequency response. If the phase-shift term is 
rewritten as 

then the output signal y(n) experiences a delay of z,. Thus, z, is called the phase 
delay1.' of the system. 

The group delay of a system is defined to be1,' 

For a bandpass signal the phase delay z, represents the delay of the carrier, and 
the group delay z, represents the delay of the envelope of the signal. 

In contrast to a continuous-time system, the frequency response of a discrete- 
time system is always periodic with a period equal to the sampling frequency, 
which in this case is normalized to one sample per second or 2n radians per 
second. This is shown by 

Another useful property of the frequency response of a system with a real- 
valued unit-pulse response is 

This relation means that the frequency response has an even magnitude function 
and an odd phase function. Thus, for systems with real-valued unit-pulse 
responses, frequency-response plots need only be drawn for positive frequencies. 

The response shown in (1.7) assumes that the input signal was an exponential 
with frequency o for all time n. If the input signal begins or ends at a defined 
time, (1.7) does not apply. The response of the system is then the sum of a steady- 
state component, determined from the frequency response, and a transient 
component. This distinction becomes especially important for short-duration 
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inputs. If, for example, an interfering tone is to be filtered out, a filter with a zero 
response at the frequency of the tone is designed. If the tone starts and then stops 
after a short time, the response of the filter will not be zero, as it would be if the 
tone had been present for all time. Only the steady-state component of the 
response will be zero. Transient, nonzero output components are produced 
when the tone begins and ends. 

We can generalize the idea of representing the behavior of a system in terms 
of its frequency response by using the z If we use a complex 
number z ,  written 

- in  the convolution sum of (1.4), instead of an exponential input, as in (1.6), the 
output is 

where 

is the z-transform of the unit-pulse response h(n). The z transform of the unit- 
pulse response is also called the transfer function of the system. For the 
summation in (1.19) to converge, the magnitude of z must be large enough, or 

If the region in the complex z plane, given by (1.20), where (1.19) converges 
includes the unit circle (i.e., if R d I ) ,  then the transfer function in (1.19), when 
evaluated on the unit circle, is simply the frequency ;esponse of the system given 
in (1.18). 

The use of the same function H for both the transfer function and the frequency 
response is quite common in the literature and should not cause confusion when 
taken in context. It is easier to write H(o)  rather than H(ej0) for the frequency 
response. 

1.4 DIGITAL FILTER DESIGN 

The two parts to the filter design process are the approximation problem and 
the realization problem. The approximation part of the problem deals with the 
choice of parameters or coefficients in the filter's transfer function to approx- 
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imate an ideal or desired response. This approximation is often performed by 
using the frequency response. 

The realization part of the filter design problem deals with choosing a 
structure to implement the transfer function. This structure may be in the form 
of a circuit diagram if the filter is to be built of components, or it may be a 
program to be used on a general-purpose computer or a signal-processing 
microprocessor. 

The approximation stage takes the specification and gives a transfer function 
through four steps: 

1. A desired or ideal response is chosen, usually in the frequency domain. 
2. An allowed class of filters is chosen (e.g., length-N FIR filters). 
3. A measure of the quality of the approximation is chosen (e.g., maximum 

error in the frequency domain). 
4. A method or algorithm is selected to find the best filter transfer function. 

The realization stage then takes this transfer function and gives a circuit or 
program through four steps: 

1. An allowed set of structures is chosen. 
2. A measure of the performance of the structure is chosen (e.g., the 

minimization of quantization noise). 
3. The best structure is chosen from the allowed set, and its parameters are 

calculated from the transfer function. 
4. The structure is implemented as a circuit or as a program. 

These steps in filter design are not independent of each other; therefore, some 
iteration is often required. However, to do the best job of filter design, one must 
recognize and understand these distinct steps. 

1.4.1 The Approximation Problem 

R w l l  from Section 1.3 that the transfer function is defined as the z transform of 
the unit-pulse response of the The digital filters in this book are all 
assumed to be causal and can all be characterized by a transfer function 

The region of convergence for H(z) lies outside a circle centered at the origin of 
the z plane. This circle passes through the pole with the largest radius. For stable 
filters this radius is less than unity. If the transfer function of a filter can be 
written as a polynomial (all ai = O), the filter has a finite-duration unit-pulse 
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response and is called an FIR filter. If common factors are allowed in the 
numerator and denominator of (1.22), the transfer function of an FIR filter can 
be written as a rational function with some ai # 0. If, after cancellation of all 
factors common to both the numerator and denominator, some of the ai 
coefficients in the denominator are not equal to zero, then the filter has an 
infinite-duration unit-pulse response and is called an IIR filter. 

The approximation problem for an FIR filter is usually stated in the 
frequency domain, equivalent to z = ej". The filter parameters to be chosen are 
the unit-pulse response values bi in 

. the Mth-order numerator polynomial of (1.22) being evaluated on the unit circle. 
More conventional terminology refers not to the order of the FIR filter but to its 
length. A length-N FIR filter has a frequency response 

with N unit-pulse response values hi, i = 0, . . . , N - I. 
In its most general form the approximation problem is a polynomial (for FIR 

filters) or rational (for IIR filters) approximation problem with a complex 
desired function on the frequency band from - .rr to .rr. (Recall that a digital filter 
has a periodic frequency response with a period of 2z.) The parameters ai and bi 
are chosen to minimize an appropriate metric of the distance between the 
desired response D(z) and the actual response H(z), often the norm of the 
difference, 

The complex, nonlinear problem that results with IIR design has no 
completely satisfactory solution to date. The much simpler complex, linear 
problem for FIR filters can be solved by linear programming, as described in 
Chapter 4. Usually the approximation problem is stated as a real approximation 
problem where the squared magnitude of the frequency response, a real-valued 
function, is chosen to meet a specification on the magnitude squared, and the 
filter is forced to be a minimum-phase filter (see Chapter 4). For FIR filters with 
exactly linear phase a real approximation problem also results. 

Several possible choices are available for the norm function in (1.25). The 
most widely used are the Chebyshev norm and the least square or 1, norm. The 
Chebyshev norm is appropriate when specifications are stated in terms of 
minimum allowed stop-band attenuation or maximum allowed pass-band error. 
The least squared error measure is appropriate when specifications are in terms 
of signal energy. 
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1.4.2 The Realization Problem 

After the coefficients in the transfer function have been chosen, the problem is 
only partially solved. The second part of the filter design is the realization 
problem. Choices must be made concerning methods for implementing the filter. 
The transfer function 

corresponds to a difference equation relating the output y(n) and the input x(n). 

y(n) = box(n) + b,x(n - 1) + . . . + b,x(n - M )  

-a ,  y(n - 1) - a,y(n - 2) - ... - a,y(n - N).  (1.27) 

One implementation or realization of the filter is the direct calculation implied 
by (1.27). As shown in Chapter 8, this direct method may not be satisfactory 
when the coefficients are quantized. In fact, it is this quantization of coefficients 
and signal values that makes the choice of filter realization important. Just as 
there are different methods for evaluating a polynomial (e.g., Horner's rule), 
there are many different ways to calculate the output y(n) in (1.27). These 
different methods for calculating filter outputs may be conveniently represented 
by block diagrams that illustrate alternative filter structures. For example, the 
two diagrams in Figs. 1.5 and 1.6 represent the calculation of the same difference 
equation describing the input/output relation for a second-order IIR filter. 
However, these two structures have different properties when the coefficients 
and signal values are quantized. The boxes with z-' represent delay elements, 
and the coefficients ai and bi are represented as gains on the various branches of 

FIGURE 1.5. Direct-form second-order block, 

--- 
FIGURE 1.6. Transpose-form second-order block. 
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the diagrams. Finite word-length effects, such as overflow, quantization noise, 
and coefficient errors caused by quantized coefficients, demand an understand- 
ing of the possible structures for implementing a digital filter. 

The realization chosen for a specific filter is also based on the type of digital 
hardware available for the implementation. With custom hardware, 6- or 7-bit 
coefficients may be used to save hardware, and some registers may have 8 bits, 
12 bits, and so on. Parallel computations may be the best implementation of the 
filter. Input/output of the signal may be an important, time-consuming 
operation, or the multiplications may take the longest time. In the case of a 
programmable microprocessor, the instruction set plays an important role in 
selecting a realization for a filter. For example, the TMS320 family has special 
instructions to facilitate the multiply/accumulate operation in the direct 

- realization of FIR filters. 

1.5 PROPERTIES OF FIR AND IIR FILTERS 

The two types of filters, FIR and IIR, are treated in separate parts of this book. 
They have very different characteristics, yet they can often meet the same 
specifications. The FIR filter has a transfer function that is a polynomial in zY1 
and is an all-zero filter in the sense that the zeros in the z plane determine the 
frequency-response magnitude characteristic. Although a length-N FIR filter 
has a pole of order N - 1 at the origin of the z plane, a pole at the origin does 
not affect the magnitude of the frequency response of the filter. An FIR filter can 
have a unit-pulse response that is symmetric around the point (N - 1 )/2 and can 
therefore have exactly linear phase. 

The IIR filter has both poles and zeros in the z-' plane and in the z plane. 
The combination of a pole near the pass-band edge with a zero near the stop- 
band edge can give an IIR filter a very short transition region between the pass- 
band and the stop band. Generally, an IIR filter can give a sharper cutoff than an 
FIR filter of the same order because both poles and zeros are present. However, 
a causal IIR filter cannot achieve exactly linear phase but the FIR filter can. The 
phase and group delay characteristics of conventional IIR filters are generally 
not as good as those of FIR filters. 

Which filter is better for a particular application depends on the hardware 
used for the implementation of the filter. For example, the TMS320 family of 
signal processors has special instructions to facilitate the implementation of an 
FIR filter, a length-N FIR filter can be computed in about the same time as an 
IIR filter of order N12.5 for the TMS32010 and N15.0 for the TMS32020.9 On 
the other hand, the IIR filter requires less memory than an FIR filter that meets 
about the same frequency-domain specifications. The IIR filter, when im- 
plemented in fixed-point arithmetic, may have instabilities (limit cycles) and may 
have large quantization noise, depending on the number of bits allocated to the 
coefficients and the signal variables in the filter. The FIR filter, on the other 
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hand, is usually implemented in a nonrecursive way, which guarantees a stable 
filter. 

For narrow-band, sharp cutoff filters where phase is not important, IIR filters 
are likely to  be superior to  FIR filters. For  applications where wave shape is 
important, the FIR filter with its good phase characteristics is usually a good 
choice. 
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Finite Impulse-  Response 
(FI  R) Filters 





Properties of Finite 
Impulse-Response Filters 

Digital filters with a finite-duration impulse-response (FIR) have characteristics 
that make them useful in many  application^.'^^ They can achieve exactly linear 
phase and cannot be unstable. The design methods are generally linear. They 
can be efficiently realized on general- or special-purpose hardware. This chapter 
examines and evaluates important design characteristics of the four basic types 
of linear-phase FIR filters. 

Because of the method of implementation, the FIR filter is also called a 
nonrecursive filter or a convolution filter. From the time-domain view of this 
operation, the FIR filter is sometimes called a moving-average filter. All of these 
names represent useful interpretations that are discussed in this chapter; 
however, the name " F I R  is the one most commonly seen in filter design 
literature. 

The duration or sequence length of the impulse response of these filters is, by 
definition, finite; therefore, the output can be written as a finite convolution sum 

y(n) = 1 h(m)x(n - m). 
m = O  

With a change of index variables, we can also write 

where x(n) is the input and h(n) is the length-N impulse response. 
The FIR filter may be interpreted as an extension of a moving sum or as a 

weighted moving average. If one has a sequence of numbers, such as prices from 
the daily stock market for a particular stock, and would like to remove the 
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erratic variations in order to discover longer trends, each number could be 
replaced by the average of itself and the preceding three numbers; that is, the 
variations within a four-day period would be "averaged out," and the longer- 
term variations would remain. To illustrate how this happens, we consider an 
artificial signal x(n) containing a linear term, K,n, and an undesired oscillating 
term added to it, such that 

If a length-2 averaging filter is used with 

s n = 0, 1, 
h(n) = J1 

0, otherwise. 

it can be verified that, after two outputs, the output is exactly the linear term 
with a delay of one-half sample interval and no oscillation. 

This example illustrates the basic FIR filter-design problem: determine N, the 
number of terms for h(n), and the values of h(n) for achieving a desired effect on 
the signal. Simple examples should be attempted to obtain an intuitive idea of 
the FIR filter as a moving average; however, this approach will not suffice for 
complicated problems where the concept of frequency becomes more valuable. 

2.1 FREQUENCY-DOMAIN DESCRIPTION OF FIR FILTERS 

The transfer function of an FIR filter is given by the z transform of h(n) as 

The frequency response of a filter, as shown in Section 1.3, is found by setting 
z = ei", which gives (2.4) the form 

where o is frequency in radians per second. Strictly speaking, the exponent 
should be -joTn, where T is the time interval between the integer steps of n (the 
sampling interval). We assume that T =I ,  until later in the book where the 
relation between n and time is important. To simplify notation, we let H(o) 
rather than H(e'") represent the frequency response. It should always be clear 
from the context whether H is a function of z or o .  

This frequency-response function is complex valued and consists of a 
magnitude and a phase. Even though the impulse response is a function of the 
discrete variable n, the response is a function of the continuous-frequency 
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variable o and is periodic with period 2n. This periodicity is easily shown as 
follows: 

Frequency is denoted by w in radians per second or by f in hertz (cycles per 
second). These quantities are related by 

An example of a length-5 filter is h(n) = (2, 3, 4, 3, 2). Figure 2.1 shows the 
frequency-response plot. 

The discrete Fourier transform (DFT) can be used to evaluate the frequency 
response at certain frequencies. The DFT3 of the length-N impulse response h(n] 

W 

FIGURE 2.1. Frequency response of the example k(n). 
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is defined as 

When compared to (2.5), (2.7) gives 

This states that the DFT of h(n) gives N samples of the frequency-response 
function H(w). This sampling at N points may not give enough detail; therefore, 
more samples are needed. Any number of equally spaced samples can be found 
with the DFT by simply appending L - N zeros to h(n) and taking an L-length 
DFT. This method is often useful when an accurate picture of all of H ( o )  is 
required. Indeed, when the number of appended zeros goes to infinity, the DFT 
becomes the Fourier transform of h(n). 

Because the DFT of h(n) is a set of N samples of the frequency response FIR 
filters can be designed so that the inverse DFT of N samples of a desired 
frequency response gives the filter coefficients h(n). That approach is called 
frequency sampling and is developed in Section 3.1. 

2.2 LINEAR-PHASE FIR FILTERS 

Particularly useful FIR filters are those with linear phase shift.'s2 To  develop the 
theory for this set of FIR filters, we need a definition of phase shift. If the real and 
imaginary parts of H ( o )  are given by 

the magnitude and phase are defined by 

Thus 

Mathematical problems arise, however, because M(w)  is not analytic and d ( o )  is 
not continuous. This problem is solved by introducing the real-valued 
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amplitude function A ( o )  that may be positive or negative. The frequency 
response is written as 

where A ( o )  is called the amplitude to distinguish it from the magnitude M ( o ) ,  
and 8 ( o )  is the continuous version of d ( o ) .  A ( o )  is a real, analytic function 
related to the magnitude by 

or IA(o)l = M ( o ) .  With this definition, A ( o )  can be made analytic and 8 ( o )  can 
be made continuous. These quantities are much easier to work with than M ( w )  
and d ( o ) .  The relationships of A ( o )  and M ( o )  and of 8 ( 0 )  and d ( o )  are shown in 
Fig. 2.2. 

To develop the characteristics and properties of linear-phase filters, we 

la) lb) 

FIGURE 2.2. The magnitude and amplitude of an example linear-phase FIR filter. (a) magnitude 
and phase. (b) amplitude and phase. 
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assume a general linear form for the phase function: 

Equation (2.5) gives the frequency-response function of a length-N FIR filter as 

and 

Equation (2.14) can be written in the form 

H(o) = A ( ~ ) ~ J ( ~ L  + K 2 W )  

if M (not necessarily an integer) is defined by 

or, equivalently, 

Equation (2.14) then becomes 

We can put (2.17) in the form of (2.15), where A(to) is real. in two ways: K ,  = 0 
or K ,  = 4 2 .  The first case requires a special even symmetry in h(j7) of the form 

which gives 
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where A(w) is a real-valued function of w and e-jM" gives the linear phase. When 
N is odd, 

M - 1  

A(w) = 1 2h(n)cos(o(M - n)) + h(M). (2.1 9) 
n  = 0 

With a change of variables, we get 

When N is even, 

N / 2  - 1 

A(w) = 2h(n)cos(w(M - n)). 
n = O  

With a change of variables, we get 

When K ,  = 4 2  in (2.15), an odd symmetry of the form 

h(n) = -h(N - n - I), 

is required. For N odd, H(w) then becomes 

H(o) = jA(o)e-jM", 

where 

M -  1 

A(w) = 1 2h(n)sin(w(M - n)), 
n = O  

For N even, 

N / 2  - 1 

A(w) = 1 2h(n)sin(w(M - n)). (2.24b) 
n = O  

2.2.1 Four Types of Linear-Phase FIR Filters 

From the previous discussion, we see that there are four possible types of FIR 
filters1 leading to the linear phase of (2.15). We will consider each type. 
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Type 1 .  The impulse response has odd length and is even symmetric about its 
midpoint n = M = ( N  - 1)/2, which requires h(n) = h(N - n - 1 )  and gives 
(2.19) and (2.20). 

Type 2. The impulse response has even length and is even symmetric about 
M ,  but M is not an integer. Therefore, there is no h(n) at the point of symmetry, 
but it satisfies (2.21) and (2.22). 

Type 3. The impulse response has odd length and the odd symmetry of (2.23), 
giving an imaginary multiplier for the linear-phase form in (2.24a). 

Type 4.  The impulse response has even length and the odd symmetry of type 
3 in (2.23) and (2.24b). 

Examples of the four types of linear-phase FIR filters with the symmetries for 
odd and even lengths are shown in Fig. 2.3. Note that for N odd and 
antisymmetry, h(M) = 0 .  

To analyze or design linear-phase FIR filters, we need to know the 
characteristics of A ( o ) .  The most important characteristics are shown in Table 
2.1. 

Figure 2.4 shows examples of amplitude functions for odd- and even-length 
linear-phase filters A(o ) .  

These characteristics reveal several inherent features that are extremely 
important to filter design. For types 3 and 4 ,  A(0) = 0 for any choice of filter 
coefficients h(n), which is undesirable for a low-pass filter. Types 2 and 3 always 
have A(n) = 0 ,  which is undesirable for a high-pass filter. In addition to the 
linear-phase characteristic representing a time shift, types 3 and 4 give a 
constant 90" phase shift, desirable for a differentiator or a Hilbert transformer. 

Type 1 Type 2 

FIGURE 2.3. Example of impulse responses for the four types of linear-phase FIR filters. 
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TABLE 2.1. Characteristics of A(o) for Linear Phase 

Type 1. Odd length, even symmetric h ( n )  
A ( w )  is even about w  = 0 
A ( o )  is even about o = 7c 

A ( o )  is periodic wi th period 27c 

Type 2. Even length. even symmetric h ( n )  
A ( o )  is even about o = 0 
A ( o )  is odd about o = 7c 

A ( o )  is periodic wi th period 47c 

Type 3. Odd length, odd symmetric h ( n )  
A ( w )  is odd about w  = 0 
A ( o )  is odd about o = 7c 

A ( w )  is periodic wi th period 27c 

Type 4. Even length, odd symmetric h ( n )  
A ( o )  is odd about o = 0 
A ( w )  is even about w  = 7c 

A ( o )  is periodic wi th period 47c 

A ( o )  = - A ( - w )  
A(7c + W )  = A(7c - 0 )  

A ( o  + 47c) = A  (o) 

FIGURE 2.4. Examples of amplitude functions for FIR filters. 
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The first step in designing a linear-phase FIR filter is choosing the type most 
compatible with the specifications. 

2.2.2 Calculation of FIR Filter Frequency Response 

As shown in Section 2.1, L equally spaced samples of H ( o )  are easily calculated 
for L > N by appending L - N zeros to h(n) for a length-L DFT. This appears as 

H - = DFT{h(n)} for k = 0, 1, . . . , L - 1. r;k) 
This method is a straightforward and flexible approach. Only the samples of 
H ( o )  that are of interest need to be calculated. In fact, we can even achieve 
nonuniform spacing of the frequency samples by altering the DFT defined in 
(2.7). Direct use of the DFT can be inefficient, and for linear-phase filters, it is 
A(w) ,  not H ( o ) ,  that is the most informative. In addition to direct application of 
the DFT, special formulas are developed in (2.26)-(2.29) for evaluating samples 
of A ( o )  that exploit the fact that h(n) is real and has certain symmetries. For long 
filters even these formulas are too inefficient, so the DFT is used but 
implemented by a fast Fourier transform (FFT) algorithm3. 

The DFT is first used to give A ( o )  directly. If h(n) is shifted to be symmetric 
about n = 0, the phase shift is zero; therefore H ( w )  = A ( o ) .  The shift must. be 
circular so that the resulting function will have a real DFT. Figure 2.5 shows the 
signal in Fig. 2.3 shifted to give a real DFT. 

Because the point of symmetry is not on an integer, it is impossible to shift an 
even-length impulse response to give a real DFT. But we can circumvent this 
limitation by stretching the even-length signal to twice its length by placing'a 
zero between each original value. The point of symmetry of this double-length 
signal then will be on an integer, and its DFT will be samples of two periods of 
the A(a1) of the original signal. This stretching and shifting is explained in 
reference 3 and illustrated in Fig. 2.6. 

h(n)  h(n)  shifted for real DFT 

h(n) with five zeros appended and shifted for real DFT 
Q 

FIGURE 2.5. Shifted impulse response for real DFT. 
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h(n) original h(n) stretched 

h(n) stretched and shifted to have a real DFT 

FIGURE 2.6. Modified even-length signal for a real DFT. 

These DFT methods for calculating samples of A ( o )  are inefficient because 
they do not take advantage of the symmetries and realness of h(n). We can derive 
special formulas by building these characteristics into the DFT; see (2.19), (2.21), 
and (2.24), which evaluate A ( o )  for any value of o. 

In the special case of type 1 filters with L equally spaced sample points, the 
samples of the frequency response have the form 

For type 2 filters 

For type 3 filters 

For type 4 filters 

In all cases the midpoint or point of symmetry is M = (N - 1)/2, which can be 
viewed as an average time delay for the filter. For the even-length filter this delay 
is not an integer multiple of the sample interval but gives a "half-sample delay". 
Formulas (2.26)-(2.29) are efficient methods for calculating the frequency 
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response of an FIR filter with lengths up to a few hundred. The NZ calculations 
required by this approach become too slow for longer lengths. A FORTRAN 
subroutine that implements both (2.26) and (2.27) is given as part of the low-pass 
filter programs in the appendix. A subroutine that implements (2.28) and (2.29) is 
in the differentiator design program in the appendix. These programs can easily 
be modified to drive a graphics terminal or plotter. 

Although this section has primarily concentrated on linear-phase filters by 
taking their symmetries into account, the method of taking the DFT of h(n) to 
obtain samples of the frequency response of an FIR filter also holds for general 
arbitrary phase filters. 

2.2.3 Zero Locations for Linear-Phase FIR Filters 

One can get a qualitative understanding of the filter characteristics by 
examining the locations of the N - 1 zeros of an FIR filter's transfer function. 
This transfer function is given by the z transform of the length-N impulse 
response from (2.4). 

This equation can be rewritten as 

where D(z) is an (N - 1)th-order polynomial that is multiplied by an (N - 1)th- 
order pole located at the origin of the complex z plane. 

h(n) real implies that the zeros will be real or will occur in complex conjugate 
pairs. If the FIR filter is linear phase, there are further restrictions on the 
possible zero locations. From (2.18) we see that linear phase implies a symmetry 
in the impulse response and, therefore, in the coefficients of the polynomial D(z) 
in (2.31). Express the complex zero z, in polar form by 

where r ,  is the radial distance of z, from the origin in the complex z plane, and x 
is the angle from the real axis. See Fig. 2.7. 

Using the definition of H(z) and D(z) in (2.30) and (2.31) and the linear-phase 
even-symmetry requirement of 
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imaginary (2) 

FIGURE 2.7. Location of the zero at 2 ,  in the complex plane. 

give 

Equation (2.33) implies that if zl is a zero of H(z), then l/zl is also a zero of H(z). 
In other words, 

if H(z,)=O, then H (2.34) 

Equation (2.34) says that if a zero exists at a radius of r,, then one also exists at a 
radius of llr,, thus giving a special type of symmetry of the zeros about the unit 
circle. Another possibility is that the zero lies on the unit circle with 
r l  = l/rl = 1. 

There are four essentially different cases1 of even-symmetric filters that have 
the lowest possible order. All higher-order symmetric filters have transfer 
functions that can be factored into products of these lowest-order transfer 
functions. They are illustrated by four basic filters of lowest order that satisfy 
these conditions: one length-2, two length-3, and one length-5. 

The only length-2, even-symmetric, linear-phase FIR filter has the form 

which, f& any constant K, has a single zero at zl = - 1. 
The even-symmetric length-3 filter has a form 

There are two possible cases. For la1 > 2 two real zeros can satisfy (2.34) with 
zl = r and llr. Thus 
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For (a( < 2 the unit circle has two complex conjugate zeros, and 

D(z) = ( z 2  + ( 2  cos x)z  + 1)K. (2.38) 

The special case for a = 2 is not of lowest order because it can be factored into 
the square of equation (2.35). 

Any length4 even-symmetric filter can be factored into products of terms of 
the form of (2.35) and (2.36). 

The fourth case is an even-symmetric length-5 filter of the form 

For a2 < 4(b - 2) and b > 2, the zeros are neither real nor on the unit circle; 
therefore, they must have complex conjugates and must have images about the 
unit circle. The form of the transfer function is 

If one of the zeros of a length-5 filter is on the real axis or on the unit circle, D(z) 
can be factored into a product of lower-order terms of the forms in (2.35), (2.37), 
and (2.38); therefore, it is not of lowest order. 

FIGURE 2.8. Zero locations for the basic linear-phase FIR filter transfer functions on the Z plane. 
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The odd-symmetric filters of (2.23) are described by the foregoing factors plus 
the basic length-2 filter described by 

The zero locations for the four basic cases of type 1 and type 2 FIR filters are 
shown in Fig. 2.8. The locations for the type 3 and type 4 odd-symmetric cases of 
(2.23) are the same, plus the zero at unity from (2.40). 

We can conclude from this analysis that all linear-phase FIR filters have 
zeros either on the unit circle or in the reciprocal symmetry of (2.37) or (2.39) 
about the unit circle and that their transfer functions can always be factored into 

- products of terms with these four basic forms. This factored form can be used in 
implementing a filter by cascading short filters to realize a long filter. Knowing 
the locations of the zeros of the transfer function helps in developing programs 
for filter design and analysis. 

SUMMARY 

This chapter derived the basic characteristics of the FIR filter. For the linear- 
phase case the frequency response can be calculated easily. The effects of the 
linear phase can be separated so that the amplitude can be approximated as a 
real-valued function. This property is very useful for filter design. It was shown 
that there are four basic types of linear-phase FIR filters, each with character- 
istics important for design. The frequency response can be calculated by 
applying the DFT to the filter coefficients or, for greater resolution, to the N 
filter coefficients with zeros added to increase the length. An efficient calculation 
of the DFT uses the fast Fourier transform (FFT). The frequency response can 
also be calculated by special formulas that include the effects of linear phase. 

Because of the linear-phase requirements, the zeros of the transfer function 
must lie on the unit circle in the z plane or they must occur in reciprocal pairs 
around the unit circle. This fact gives insight into the effects of the zero locations 
on the frequency response and can be used in the implementation of the filter. 

The FIR filter is attractive from several viewpoints. It alone can achieve 
exactly linear phase. It is easily designed with linear methods. It cannot be 
unstable. The implementation or realization in hardware or on a computer is 
basically the calculation of an inner product, which can be accomplished 
efficiently. On the negative side, the FIR filter may require a rather long length 
to achieve certain frequency responses. Hence, a large number of arithmetic 
operations per output value and a large number of coefficients have to be stored. 
The linear-phase characteristic makes the time delay of the filter equal to half its 
length, which may be large. 

How the FIR filter is implemented and whether it is chosen over alternatives 
depend strongly on the hardware or computer to  be used. If an array processor 
is used, an FFT  implementation3 would probably be selected. If the TMS320 
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signal processor is used, a direct calculation of the inner product is probably 
best. If a VAX or similar general-purpose computer with floating-point 
arithmetic is used, an IIR filter may be chosen over the FIR, or the im- 
plementation of the FIR might take into account the symmetries of the filter 
coefficients to reduce arithmetic. To make these choices, one must consider the 
characteristics developed in this chapter together with the results developed 
later in this book. 
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Design of Linear-Phase 
Finite Impulse-Response 

In this chapter, various methods of linear-phase FIR filter design are developed 
and The basic filter design problem involves the following steps: 

1. Choose a desired ideal response, usually described in the frequency 
domain. 

2. Choose an allowed class of filters (e.g., a length-N FIR filter). 
3. Establish a measure or criterion of "goodness" for the response of an 

allowed filter compared to the desired response. 
4. Develop a method to find the best member of the allowed class of linear- 

phase FIR filters as measured by the criterion of goodness. 

This approach is often used iteratively. After the best filter is designed and 
evaluated, the desired response or the allowed class or the measure of quality 
might be changed; the filter would then be redesigned and reevaluated. 

The Ideal Low- Pass Frequency Response 
This chapter develops design procedures by considering the basic low-pass filter. 
The simplest ideal response has a pass band extending from o = 0 up to to = to, 
and a stop band extending from o = o, up to the Nyquist frequency of o = 7c 

(see Fig. 3.1~). In some cases there is a region between the pass band and the stop 
band where neither the desired nor the undesired signals exist. Or the region 
may be the overlap of the spectra of the desired and undesired signals. This 
region can be defined as a transition region, with the ideal response having a 
transition function that more smoothly connects the pass-band and stop-band 
responses and allows a better total approximation (see Fig. 3.lb). The third 
possibility (Fig. 3 .1~ )  does not define the approximation over the transition 
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FIGURE 3.1. Ideal low-pass FIR filter frequency responses. 

region, and it is called a transition band. All three cases are considered by the 
different design criteria and methods. 

The Approximation Criteria 
Three error measures are generally used in FIR filter design. One is the average 
of the squared error in the frequency-response approximation. The second is the 
maximum of the error over specified regions of the frequency response. A third 
approach is based on a Taylor series approximation to the desired response. The 
method based on the first error measure is called a least squared (LS) 
approximation, the second a Chebyshev approximation, and the third a 
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Butterworth or maximally flat approximation. Most of the useful design 
procedures are based on one of these three approximations, or on a combination 
of them, or on a modification of them. 

The Design Methods 
Each of the various methods for FIR filter design discussed in this chapter has 
some advantages and some disadvantages. The frequency-sampling method is 
fast and simple. It is useful for adaptive filters or for an intermediate stage in a 
more complicated algorithm where speed is important. Unfortunately, it gives 
the least control over the total frequency response. 

The LS error methods use an error criterion that is related to the energy of 
the signal or noise, and the design equations are linear. However, the designs 
sometimes have frequency responses with oscillations or overshoots that may be 
undesirable. The use of windows is a simple method of controlling these effects, 
but it is rather ad hoc and the results are not optimal according to any known 
criterion. Use of a transition region or weights gives excellent results, but the 
problem may not have an analytical solution, or it may require the solution of 
ill-conditioned equations. 

The Parks-McClellan algorithm minimizes the Chebyshev error, but the 
design algorithm can be slow. If smoothness of the response is needed, the 
maximally flat approximation has an analytical solution for the basic low-pass 
filter. A newly developed method based on Zolotarev polynomials gives a 
mixture of maximally flat and Chebyshev approximations. This chapter con- 
siders each of these methods and their characteristics. 

3.1 FREQUENCY-SAMPLING DESIGN 

The most straightforward design method is simply the inverse of the analysis 
procedure of (2.7) given in Section 2.1. The analysis calculates samples of the 
frequency response from the filter coefficients. This problem is well posed if N 
samples of a desired frequency response are used to find the N filter coefficients 
by simply solving the N simultaneous equations given by (2.8). This approach 
can also be viewed as an interpolation problem where the designed filter will 
have a frequency response that exactly passes through the desired points and, 
between those points, takes on values given by (2.5). 

Directly solving the N equations of (2.8) is generally undesirable. Solving N 
simultaneous equations requires on the order of N3 arithmetic operations, and 
the equations are sometimes ill conditioned. If the frequency samples are equally 
spaced, the DFT can be used. Since the DFT of the impulse response gives 
samples of the frequency response, the inverse DFT (IDFT) of samples of a 
desired frequency response will give the impulse response. This requires N2 
arithmetic operations in general, but only N log N operations if the FFT can be 
used.13 

Since h(n) is real and, for the linear-phase problem, symmetric, the required 
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arithmetic is reduced by a factor of 4 compared to the direct DFT approach, and 
simple design formulas that have good numerical properties can be derived. 

To develop explicit formulas for frequency-sampling design of linear-phase 
FIR filters, a direct use of the inverse DFT is most straightforward. For N 
equally spaced frequency-response samples of C, = H(2nk/N),  the length-N FIR 
filter coefficients are given by the IDFT as 

When H(w)  is linear phase, (3.1) may be simplified by the formulas in Chapter 2 
for the four types of linear-phase FIR filters. For example, the frequency 
response (2.26) for the type 1 filter for N is odd, L = N ,  and M = ( N  - 1)/2, and 
a frequency sample at w = 0 is 

Using the amplitude function A(w), defined in (2.10), of the form (3.2) and the 
IDFT (3.1) give for the impulse response 

Because h(n) is real, A, = A ,  -, and (3.3) becomes 

Only M of the h(n) need be calculated because of the symmetries in (2.18). 
This formula calculates the impulse response values h(n) from the desired 

frequency samples A, and requires M 2  operations rather than N2. An interesting 
observation is that not only are (3.2) and (3.4) a pair of analysis and design 
formulas, but they are also a transform pair. Indeed, they are of the same form as 
a cosine transform.14 

A similar development applied to the cases for even N from (2.27) gives the 
frequency samples 
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The design formula becomes 

which is of the same form as (3.4), except that the upper limit on the summation 
recognizes N as even and (from Section 2.2.1) AN,,  = 0. 

The scheme just described uses frequency samples at 

-which are N equally spaced samples starting at o = 0. Another possible 
frequency-sampling scheme that allows design formulas has no sample at o = 0 
but uses N equally spaced samples located at 

This form of frequency sampling is more difficult to relate to the DFT than the 
sampling of ( 3 3 ,  but it can be done by stretching1' A, and taking a 2N-length 
DFT. 

The two cases for odd and even lengths and the two for samples at zero but 
not at zero frequency give a total of four cases for the frequency-sampling design 
method applied to linear-phase FIR filters of types 1 and 2, as defined in Section 
2.2.1. For an odd length and no zero sample, we derive the analysis and design 
formulas analogously to (3.2) and (3.4): 

The design formula becomes 

2n(n - M)(k + f )  + A ,  cos n(n - M) . (3.10) 
N I 

The fourth case, for an even length and no zero frequency sample, gives the 
analysis formula 

and the design formula 
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Formulas (3.4), (3.6), (3.10), and (3.12) allow a straightforward design of the four 
frequency-sampling cases. They and their analysis companions in (3.1), (3.5), 
(3.9), and (3.1 1) also are the four forms of discrete cosine and inverse cosine 
transforms. A FORTRAN program that implements these four designs is given 
as Program 1 in the appendix. 

The designs of even-symmetric linear-phase FIR filters of types 1 and 2 in 
Section 2.2.1 have been developed here. A similar development for the odd- 
symmetric filters, types 3 and 4, can easily be performed, with the results closely 
related to the discrete sine transform. Using the frequency sampling scheme of 
(3.7), we obtain the type 3 analysis and design results: 

For type 4 

If we use the frequency-sampling scheme of (3.8), the type 3 equations become 

For type 4 

These type 3 and type 4 formulas are useful in the design of differentiators and 
Hilbert  transformer^'*^^^^^^ directly and as the base of the discrete LS error 
methods in Section 3.2.1. 
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3.1.1 Guidelines for Frequency-Sampling Design 

Guidelines are necessary for choosing among the four cases for frequency- 
sampling design. Some examples may aid in making the choice. One example is 
a low-pass filter with a pass band extending through half of the range to the 
Nyquist frequency or folding frequency (one half of the sampling frequency). 
With normalized notation, the sampling frequency is w = 2n rad/s or f = 1 Hz 
(one cycle per second). As shown in Table 2.1, the frequency response is periodic 
with period 2n if N is odd and period 4n if N is even. Therefore, the maximum 
frequency or Nyquist frequency is w = n or f = 0.5 Hz. 

A linear-phase FIR filter is designed to approximate the ideal low-pass 
response that has a pass band from w = 0 to n/2 and a stop band from w = 4 2  

'to n. The ideal amplitude frequency-response plot is shown in Fig. 3 .1~ .  
Experience shows that the total frequency response of the designed filter 

becomes closer to the ideal as the length becomes longer. However, the measure 
of closeness must be carefully defined. For now, we assume that an approximate 
length has been chosen. The choice of whether the length is odd or even is made 
by matching the intrinsic properties of the response of an even or odd length, as 
shown in Table 2.1 and Fig. 2.3, to the desired response. Finally, the choice of a 
frequency sample at zero frequency or not is made. This choice is made to make 
the transition between pass band and stop band fall as near as possible to 
halfway between two sample points. The design can then be calculated by one of 
the formulas in (3.4), (3.6), (3.10), or (3.12). 

If frequency-sampling design with an ideal desired frequency response having 
a discontinuity causes too much oscillation or overshoot between the samples, a 
transition,region can be added to the ideal response. That is discussed in Section 
3.2.3.1. The shape of the transition function can have an important influence on 
the design. 

Example 3.1. Length-21 Low-pass Filter by Frequency Sampling 
This example concerns the design of an odd length-21, linear-phase, low-pass 

filter where the desired frequency response has a pass band that is half of the 
maximum frequency, as illustrated in Fig. 3 .1~ .  Thus, the band edge is 
f, = 0.25 Hz for a sampling frequency of one sample per second. The odd-length 
formula (3.4) for a sample at zero frequency is used to design the filter (see 
Program 1 in the appendix). The resulting filter coefficients are 



40 Design of Linear-Phase Finite Impulse-Response 

The frequency response is shown in Fig. 3.2a and 3.2b. Note the ripples in the 
pass band and the stop band near the band edge and the exact interpolation of 
the sample points in the pass band and the stop band. The maximum stop-band 
attenuation is approximately 16 db. The locations of the zeros of the transfer 
function are shown in Fig. 3.2~. A total of 20 zeros for the twentieth-degree 
polynomial is formed from the 21 filter coefficients in (2.4). There are 10 zeros on 
the unit circle that come from the samples in the stop band and have the form of 
(2.38), as shown in Fig. 2.8~.  There are 10 zeros with 8 occuring in two sets of 
four, as given in (2.39) and shown in Fig. 2.8d and two on the real axis, as in Fig. 
2.8b and given in (2.37). 

Example 3.2. Length-20 Low-pass Filter by Frequency Sampling 
This example uses the same specifications as Example 3.1 with a band edge of 

f, = 0.25 Hz, but uses an even-length design of N = 20 from (3.5). The filter 

FIGURE 3.2. Length-21 low-pass FIR filter by frequency sampling. 
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coefficients from (3.6) and Program 1 in the appendix are 
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The frequency response is given in Fig. 3.3a and 3.3b, and the transfer function 
zeros are shown in Fig. 3 .3~ .  Note the zero at w = n that all even-length filters 
have, in contrast to the case for N = 21. This results in a single zero on the unit 
circle on the real axis since there is now a total of nine zeros on the unit circle. 
The pass-band and stop-band performances of this example are very close to 
those in Example 3.1, but the location of the band edge is slightly higher. 

Extensions 
A possible generalization with the frequency-sampling design is the specification 
of the desired frequency-response samples over a nonuniform spacing of 
frequencies. The IDFT cannot be used, and specific design formulas cannot be 
derived for this case, but the design problem can be posed by taking N samples 
of the frequency responses given in (2.19), (2.21), or (2.24) at arbitrary frequencies 

FIGURE 3.3. Length-20 low-pass FIR filter by frequency sampling 



3.1 Frequency-Sampling Design 43 

lmag (2) 
0 

z plane 

fcl 

FIGURE 3.3. (Continued) 

to give N simultaneous equations that can be solved for h(n). More generally, for 
arbitrary-phase response, (2.5) can be sampled at N frequencies. Again, care 
must be used to avoid large errors between sample frequencies. 

The frequency-sampling design method can be used directly to design FIR 
filters; however, it may also be used as a starting point or intermediate stage in a 
more complicated method. It is also used to design the high-order prototype 
filters that are truncated in the LS error method of Section 3.2.1. 

Section 3.2.2.1 shows that by allowing a transition region as in Fig. 3.lb, it is 
possible to reduce the overshoot or ripple in the pass band and stop band for a 
given order. It is also possible to further reduce the ripple by allowing several 
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sample points in the transition region and adjusting their value to minimize an 
error criterion.' This was a popular approach to FIR filter design before the 
Remes exchange algorithm was developed for the direct design of optimal 
Chebyshev filters. 

Summary 

This section developed the FIR filter frequency-sampling design method 
specifically for the linear-phase filter. Direct design with the frequency-sampling 
method is possible by applying the inverse DFT to equally spaced samples of the 
frequency response H(w). This direct use of the IDFT can design arbitrary-phase 
as well as linear-phase FIR filters. If it is used to design linear-phase filters, the 
desired H(w) must satisfy the constraints given in Section 2.2 and the linear 
phase must be consistent with the filter length. Great care must be exercised in 
designing both linear- and nonlinear-phase filters by the direct method. If the 
desired phase response is in some way inconsistent with the magnitude or the 
filter length, large errors will occur between the sample points. However, when 
used with care and when checked by analysis, it is a very simple and powerful 
design tool. 

For the linear-phase FIR filter, simple design formulas were developed that 
automatically take care of the phase. These formulas are easy to use and can be 
implemented on small computers or calculators to design very long filters. The 
design formulas or the IDFT give very little numerical error. Using the FFT to 
calculate the IDFT gives a fast design procedure with even less numerical error. 

3.2 LEAST SQUARED ERROR FREQUENCY-DOMAIN DESIGN 

The purpose of most filters is to separate desired signals from undesired signals 
or noise. Often the descriptions of the signals and noise are given in terms of 
their frequency content or the energy of the signals in frequency bands. For this 
reason, filter specifications are generally given in the frequency domain, and, 
since the energy of a signal is related to the square of the signal, a squared error 
approximation criterion is often appropriate. This section considers two 
methods of defining a squared error. The first definition is the sum of the squares 
of the error measured at a finite set of frequency sample points. The second is the 
integral of the square of the error over a finite or infinite range of frequencies. 

3.2.1 Discrete Frequency Samples 

The frequency-sampling design method is really not an approximation 
approach but an interpolation method that produces a filter with a frequency 
response that exactly passes through the sample points. However, there is no 
constraint on the response between the sample points, and poor results may be 
obtained. In this section we control the response between sample points by 
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considering a number of sample points larger than the order of the filter. 
Because this results in more equations than unknowns, only approximate 
solutions are possible. 

The frequency response of an FIR filter presented in (2.5) is given by 

The design problem is posed by defining an error measure E as a sum of the 
squared differences between the actual and the desired frequency response over a 
set of L frequency samples. This error function is defined as 

where Hd(wk)  are the L samples of the desired response. This problem is easier to 
formulate and solve if the frequency samples are equally spaced, which gives 

and the problem is restricted to linear-phase filters, where the real-valued 
amplitude A(w), rather than the complex frequency response H(w), can be 
approximated. For approximations to a complex response, see Chapter 4. 

With these conditions (3.14) becomes 

or, with a simpler notation, 

A powerful property of the Fourier transform permits a straightforward 
design of LS error FIR filters. Parseval's t h e ~ r e m , ' ~ - ' ~  based on the orthogon- 
ality of the DFT, states that the error defined by'(3.15) in the frequency domain 
can also be calculated in the time domain for L odd by 

where hdn is the length-L FIR filter that has the L frequency-response amplitude 
samples A,,. We can calculate this filter by the frequency-sampling method of 
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Section 3.1, using the special formulas such as (3.4) for length L or the IDFT. A 
factor of 1/L is omitted from these equations to simplify the development. The 
filter to be designed has a length-N impulse response hn with L frequency- 
response samples A,. Because the filter is of length-N, the error equation can be 
split into two sums: 

This equation clearly shows that to minimize E, we need to choose the N values 
of hn to be equal to the equivalent N values of h,,. In other words, we obtain hn 
by simply truncating h,,. The second summation then gives the residual error. 
Examining the residual error as a function of N may help to choose the filter 
length N. 

For the type 1 linear-phase FIR filter (described in Section 2.2) with odd 
length N and even-symmetric impulse response, the L equally spaced samples of 
the frequency response from (2.19) give (2.26) and (3.1). The samples are 

where M = (N - 1)/2. This formula was derived as a special case of the DFT 
applied to the type 1, real, even-symmetric FIR filter coefficients to calculate the 
san?pled amplitude of the frequency response. We noted in Section 3.1 that it is 
also a cosine transform, and it can be shown that this transformation is 
orthogonal over the independent values of A,, just as the DFT is. 

To use the alternative equally spaced sampling in (3.8), which has no sample 
at zero frequency, we must calculate hdn from (3.10). The type 2 filters with even 
N are developed in a similar way and use the design formulas (3.6) and (3.12). 
These methods are summarized as follows: 

The filter design procedure for an odd-length filter is to first design an odd-length-L 
FIR filter by the frequency-sampling method from (3.4) or (3.10) or the IDFT, then to 
symmetrically truncate it to the desired odd-length N. To design an even-length filter, 
start with an even-length-L frequency-sampling design from (3.6) or (3.12) or the 
IDFT and symmetrically truncate. The resulting length-N FIR filters are an optimal 
LS error approximation to the desired frequency response over the L samples. 

This approach can also be applied to the general arbitrary-phase FIR filter 
design problem discussed in Chapter 4. 

It is sometimes desirable to formulate the mean-error design problem using 
unequally spaced frequency samples and/or a weighting function on the error. 
This formulation requires a different approach to the solution. 
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Equation (2.19) relates the L frequency samples to the M + 1 independent 
values of the symmetric length-N impulse response h(n). The design problem 
that gives the A,  and the values for h(n) represents L equations with M + 1 
unknowns. Because of the symmetries of A(w)  shown in Fig. 2.3, only half of the 
L values of A,  are independent; however, to have proper weights on all L 
samples, we must calculate all values. 

Equation (2.19) sampled at L arbitrary frequencies can be written as a matrix 
equation 

where h is an M + 1 length vector with elements that are the first half of h(n). F is 
an L-by-(M + 1 )  matrix of the cosine terms from (2.19), and a is a length-L 
vector of the frequency samples A,. If the formula for the calculation of L values 
of the frequency response of a length-N FIR filter in (2.19) is used to define an 
error vector of differences, as defined in (3.15), and the result is written in the 
matrix formulation of (3.16), the error becomes 

where e is a vector of differences between the actual and desired samples of the 
frequency response. The error measure defined in (3.1 5) becomes the quadratic 
form 

For L > N, equation (3.16) is overdetermined and cannot, in general, be solved 
for h. The filter design error measure is the norm of e ,  as given in (3.18). This 
error measure is minimized by making e orthogonal to the columns of F in 
(3.17). Multiplying both sides of (3.17) by the transpose of F gives 

For E to be minimum, e must be orthogonal to the columns of F and, therefore, 
FTe must be zero. The optimal h must satisfy the "normal  equation^"^ 

Equation (3.19) can be rewritten in terms of the p seudo in~e r se~ .~  as 
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If L = N, (3.20) becomes the regular frequency-sampling problem and can be 
solved with zero error. For the case of interest in this section, where L > N, there 
are still only M + 1 equations to be solved. For L >> N, equation (3.19) may be 
ill conditioned, and (3.20) should not be used to solve it. Special methods will be 
necessary to avoid serious numerical problems.' 

If a weighted error function is desired, (3.15) is modified to give 

The normal equations of (3.19) become 

where W is a positive-definite matrix of the weights. If zero weights are desired, 
the effect is achieved by removing those frequencies from the set of L frequencies, 
not by using a zero-value weight, which would violate the vector space 
conditions of a well-posed minimization problem. 

Although developed here for the linear-phase filter, (3.22) is a general design 
approach for the FIR filter that allows arbitrary-phase sampling as well as 
uneven frequency sampling and a weighting function in the error definition. For 
the arbitrary-phase case a complex F is obtained from sampling (2.5). For the 
special case of the equally spaced frequency samples and linear-phase filter with 
unity weighting, the solution of (3.19) or (3.22) is the same as given by the 
frequency-sampling design formulas in (3.4). 

An important use of the unequally spaced frequency samples is the creation of 
a transition band between the pass band and the stop band where there are no 
samples. This "don't care" band does not contribute to the error measure E and 
allows much better approximation to occur over the pass band and stop band. 

Of the many ways to solve (3.19) or (3.22), one of the easiest and most reliable 
is the linear algebra software package LINPACK,' which has a special program 
to solve this least mean squared error problem. Equation (3.20) should not be 
solved directly. For large L it is ill conditioned, and a direct solution will 
probably have large errors. LINPACK uses special algorithms to minimize 
these numerical errors. 

This approach was applied to the same problems that were solved by 
frequency sampling in the previous section. For N = L the same results were 
obtained, thus verifying the theoretical prediction. As L becomes larger 
compared to N, more control is exerted over the behavior between the original 
sample points, and the solution approaches the same results as obtained in the 
next section, where the error is defined as a continuous function of frequency 
and the integral of the squared error is minimized. A program that calls 
LINPACK to design a linear-phase FIR filter by these methods is Program 2 in 
the appendix. Although the solution of the normal equations is a powerful and 
flexible technique, it can be slow, have numerical problems, and require large 
amounts of computer memory. 
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Example 3.3. Low-pass Filter Designed by Discrete Least Squared Error 
The same desired frequency response as used in Example 3.1 with a band 

edge off, = 0.25 Hz is used with the discrete LS error design method of (3.19). 
Program 2 in the appendix is used to find the length-21 filter coefficients. Over 
81 frequency samples are optimized. The coefficients can also be found from (3.4) 
and Program 1; use a length of 81 and truncate to length 21. The coefficients are 

Figures 3 . 4 ~  and 3.4b illustrate the frequency response and Fig. 3 . 4 ~  the zero 
locations for the length-21 filter. The filter has slightly less pass-band ripple and 
a minimum stop-band attenuation of 20 db. The zeros in the stop band are no 
longer equally spaced as they were for the frequency-sampling design. The 
simple frequency-sampling design forces the zeros and ripples to be equally 
spaced. By this not being the case for the LS error design, it obtains less pass- 
band ripple and more stop-band attenuation simultaneously. Note the zero 
locations compared to those in Fig. 3 .2~.  

Example 3.4. Low-pass Filter with a Transition Region Designed by Discrete 
Least Syuured Error 

Figure 3.5 illustrates the frequency response of a length-21 filter designed 
with a transition region and a linear transition function. The pass band goes 
from f =O to f = 0.2, the transition region is from f = 0.2 to f = 0.3 with a 
linear transition function, and the stop band is from f = 0.3 to the Nyquist 
frequency f = 0.5 Hz. Note the reduction in the overshoot near the band edges 
as compared with Example 3.3. We used Program 2 to design this example, 
optimizing over 199 samples, with a modified section for the desired response. 
The same result could also be obtained by truncating a frequency-sampling 
design. The filter coefficients are 



FIGURE 3.4. Low-pass FIR filter by discrete LS error. 
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Example 3.5. Low-pass Filter with a Transition Band Designed by  Discrete Least 
Squared Error over the Pass Band and Stop Band 

Figure 3.6 illustrates the frequency response of a length-21 filter designed 
with unequally spaced frequency samples so that the transition region is not 
included in the error at all. There are 336 frequency samples equally spaced over 
the same pass band and stop band as in Example 3.4. Note the further reduction 
in overshoot, which is the result of putting no constraints on the transition 
region response. The filter coefficients were calculated from Program 9 in the 
appendix, with the ideas from (3.19), and are 

Summary 

This section formulated an FIR filter design problem based on an LS error 
criterion and developed two methods of solution. The first method requires the 
samples of the desired frequency response to be equally spaced and the error to 



FIGURE 3.5. Low-pass filter with transition region by discrete LS error. 



FIGURE 3.6. Low-pass filter with a transition band by discrete LS error over the pass band and 
stop band. 
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have no weighting function. When these conditions are met, a length-L IDFT 
can be used to design an FIR filter, which is truncated to length N to give an LS 
error FIR filter from an arbitrary, desired frequency response. If a linear-phase 
FIR filter is desired, special design formulas for the length-L prototype are 
available and are implemented in Program 1. In both cases the problems are 
numerically well conditioned, and the design calculations are fairly fast. If the 
FFT can be used for the IDFT, they can be very fast. Because this method can be 
applied to an arbitrary desired frequency response, the excessive oscillation that 
occurs near a discontinuity in the desired response, known as the Gibbs 
phenomenon, can be reduced by using a transition region between the pass band 
and stop band with a transition function to remove the discontinuity. 

The second method of solution requires solving the normal equations, which 
are a set of overdetermined simultaneous equations. This formulation is more 
general in that it allows unequally spaced frequency samples and an error weight 
function, but it is slower and often numerically ill conditioned. The solution is 
best achieved by using special algorithms that minimize the inherent numerical 
errors of this approach. The FORTRAN program in the appendix (Program 2) 
solves this problem with the software subroutines in LINPACK.' This method 
allows the use of a transition band between the pass band and stop band, which 
does not contribute at all to the error measure. It also allows weighting the error 
to get a better approximation in some regions. The length of a filter that can be 
designed by this method is limited by the size of the computer memory available 
and by numerical errors. When it can be used, the results are excellent. 

3.2.2 Integral Squared Error Approximation Criterion 

In the previous section the value of the amplitude of the frequency response was 
controlled by using an error function that was defined over L frequency samples 
where L was greater than the filter length N. In certain cases, such as for the 
basic low-pass filter, it is possible to find an analytical solution to the problem 
where the error is defined as an integral over all of the frequency response. This 
section develops that case. 

An error measure is defined as the integral of the square of the difference 
between the actual amplitude and the desired amplitude over the basic 
frequency range of -n  < o < n. This measure is called the integral squared 
error1 -4. 

I A ( o )  - Ad(w)lZ d o .  

The result of minimizing this error measure will be close to that obtained from 
minimizing the discrete error measure in (3.15) for very large L. 

If we assume that the filter impulse response h(n) is infinite in duration and 
symmetric about the origin, then there is zero phase shift, and the amplitude of 
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the frequency response can be written as 

which is simply the Fourier transform of h(n), with an inverse of 

1 " 
h(n) = - 1 d(w)e"" d o .  

2n  u - z  

Parseval's theoremL3-l6 states that the energy in a signal can be calculated in 
the time domain as well as in the frequency domain. Equation (3.23) becomes 

where h,, is the inverse transform of A , ( o ) ,  calculated by (3.25), and h, is the 
length-N filter with frequency response A(w) .  Because h, is of finite length N, the 
error summation can be split into two sums 

where M = (N - 1)/2. This expression clearly shows that to minimize E, the N 
values of h,  should be chosen equal to the corresponding N values of h,,, The 
residual error for the optimal h, is given by the second summation. 

Another interpretation of these equations is that (3.24) is a Fourier series 
expansion of the periodic function A ( o ) ,  and the second equation is the formula 
for the series coefficients. From the theory of Fourier series we know that a 
truncated series is an optimal approximation to the expanded function in the 
sense that the integral squared error is minimized. 

For the type 1 linear-phase FIR filter described in Section 2.2, which has odd 
length N and an even-symmetric impulse response, the amplitude frequency 
response from (3.24) is 

with an infinite, noncausal impulse response of 

h(n) = - A.(w)cos(wn) d o .  : 1: 
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The type 2 filter, which has an even length, can be designed by modifying this 
approach, which is illustrated in the development for the ideal low-pass filter 
later in this section. The design method is summarized as follows: 

If the impulse response of a linear-phase FIR filter is found by symmetrically 
truncating the Fourier series expansion of the desired amplitude response, the 
resulting filter will have an amplitude response that is an LS error approximation to 
the desired response. 

This method is similar to the results obtained in the last section with the discrete 
LS error criterion and can be used either analytically or numerically for any 
desired amplitude response that satisfies the conditions required of a linear- 
phase FIR filter as given in Section 2.2.1. 

The main limitation of this design method is the difficulty in calculating h,, 
from A,(o). This problem exists because the calculation requires evaluating the 
integral in (3.25) rather than the sum in (3.4) for the discrete frequency 
formulation of the LS error design. For only a few practical desired frequency 
responses can a formula be derived. Fortunately, it is possible for the basic low- 
pass filter with desired amplitude given in Figs. 3.la and 3.lb. 

For the low-pass filter we assume that the desired amplitude is unity from 
w = 0 to o = Wn, and zero from o = Wn to o = n, as shown in Fig. 3.7. 

For N odd the base frequency range for the coefficient equation (3.25) is - n 
to n (or 0 to 2n). The desired amplitude is 1 from - Wn to Wn, where W is the 
cutoff frequency of the filter expressed as a fraction of the total range from 0 to n 
(see Fig. 3.7). The ideal or desired amplitude is given over the frequency range 
- n < o < n b y  

1 for - Wn < w < Wn, 
A(o) = 

0 otherwise. 

From (3.25) the impulse response 

becomes 

sin( Wnn) 
h(n) = , 

nn 

FIGURE 3.7. Ideal low-pass filter response for odd N 
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which has even symmetry about the origin and therefore is noncausal. Since it is 
infinitely long, it is not physically realizable. However, this h(n) gives the exact 
desired frequency response of (3.26) and Fig. 3.7. To make this result physically 
possible, we truncate the impulse response of (3.27) (symmetrically to maintain 
the linear-phase property), which, according to Fourier series theory, gives a 
finite-length impulse response with an amplitude that is an LS error approxi- 
mation to the desired response. The finite-length h(n) is shifted to the right to 
make it causal. The shift only adds a linear phase and does not destroy the 
minimum error property. 

To obtain a length-N filter, we truncate the impulse response by setting all 
terms for n < - M and n > M egual to zero, where M = (N - 1)/2, as defined in 
(2.16). The response is then shifted to the right by M terms, and the result is a 

- causal, optimal LS error FIR filter. The resulting impulse response is 

sin(Wn(n - M)) 
O < n < N - 1 ,  

( 0  otherwise. 

If the transition between the pass band and the stop band is expressed as f, in 
hertz rather than W as a fraction of the 0 < o < n region, and if the sampling 
rate is one sample per second, (3.28) becomes 

sin(2&(n - M)) 
O < n < N - 1 ,  

n(n - M) ' 

1 0  otherwise. 

See Fig. 3.8. 
The derivation of h(n) for even N is slightly more complicated because there is 

no zero-phase, even-length FIR filter corresponding to (3.27) and Fig. 3 .8~ .  The 
amplitude response of the ideal low-pass filter with even N is given in Fig. 3.9. By 
using a frequency range of - 2n to 2n, we obtain a double-length h(n) with zero 
values at the even indices. It is compressed to length N by simply removing the 
zero values and then truncated and shifted to give an even-length optimal filter. 
The process is illustrated in Fig. 3.10. 

The design formula for the even-length case is exactly the same as for the odd 
length given in (3.28), but note that M is now a fraction. 

Example 3.6. Length-21 Low-pass Filter Designed by Least Squared Error 
This example is the straightforward, continuous, LS error design given by 

(3.28) with simple truncation. The frequency response and zero locations given 
in Fig. 3.1 1 are very similar to those resulting from the discrete LS error method 
in Fig. 3.4 for a band edge off, = 0.25 Hz. The filter coefficients calculated by 
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FIGURE 3.8. Design of optimal LS error FIR filter. 

A d ( d  

FIGURE 3.9. Ideal low-pass filter response for even N. 

Program 4 in the appendix with a rectangular window are 
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FIGURE 3.10. Design of optimal LS error FIR filter for even N. 

Note that the even-indexed terms are all zero except for the center term h(10). 
This situation occurs because the band edge is exactly one half of the Nyquist 
frequency. This advantage is important in implementing the filter because these 
multiplications need not be carried out. In practical applications a possible 
change in the band edge or the sampling rate should always be considered as a 
method to reduce arithmetic. This design is the classic LS error low-pass FIR 
filter and it should be compared to the other FIR filter designs in this book. 

The Gibbs Phenomenon 
As shown in this and previous examples, the amplitude frequency response of 
the low-pass filter has an oscillating behavior that is more pronounced near the 
edge of the pass band. This behavior is known as the Gibbs phenomenon15.16 and 
is the result of approximating a discontinuity in the desired frequency response. 
Early in the study of Fourier series, it was found that if a function with a 
discontinuity was approximated by a Fourier series, there would be an 
overshoot in the region near the discontinuity. As the number of Fourier series 
terms increased, the squared error decreased and approached zero as the 
number of terms approached infinity. However, the maximum value of the 
overshoot, and therefore the maximum value of the error, did not go to zero but 
approached a constant value of approximately 11% of the size of the discontinu- 
ity. See Fig. 3.12. This behavior is exactly what happens in the case of the LS 
error design of a low-pass FIR filter. Although it is less well known, it also 
happens in the frequency-sampling design method where it approaches approx- 
imately 18% of the discontinuity. See Fig. 3.13. 

The Gibbs phenomenon overshoot may be undesirable, but it is a direct 
consequence of minimizing the squared error when approximating a discontinu- 
ity with no transition region. Any reduction of the overshoot increases the value 
of the squared error. This basic conflict of desired properties causes a rethinking 
of the whole formulation of the LS error design problem. 



FIGURE 3.11. Length-21 low-pass FIR filter by LS error. 



(cl 

FIGURE 3.1 1 .  (Continued) 

W 

FIGURE 3.12.  The Gibbs phenomenon in LS error filter design. 

W 

FIGURE 3.1 3 .  Example of overshoot for frequency-sampling design. 



62 Design of Linear-Phase Finite Impulse-Response 

Least Squared Error Approximation of a Differentiator 
The preceding development has considered the approximation of an ideal low- 
pass filter. The ideal differentiator can also be well approximated by a linear- 
phase FIR filter. The frequency response of a differentiator is 

Because A(w) is an odd function of w and there is a constant 90" phase shift, the 
design should use type 3 or type 4, as defined in Section 2.2.1 and described in 
Table 2.1. If the differentiation is to be combined with a low-pass filter to reduce 
high-frequency interference, type 3 should be used because it always has a zero 
response at A(n). If the widest possible bandwidth is desired, type 4 should be 
used. 

For the design of a type 3 differentiator that has odd length N, AAw) is 
defined over - n < w < n and is periodic with period 2n, which was the case for 
the low-pass filter in (3.26) shown in Fig. 3.7. The filter coefficients are derived 
from (3.1) and are given by 

For the design of a type 4 wide-band differentiator with even N, we define 
A,(w) over -2n < w < 271, which is periodic with period 4n, as was the case for 
the low-pass filter of Fig. 3.9. The ideal response is 

The filter coefficients are 

These results must be truncated and shifted, as for the low-pass filter, to give a 
length-N causal filter. An implementation of these two differentiator designs is 
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given in the appendix in Program 5. The Gibbs phenomenon occurring in the 
type 3 approximation can be reduced by truncating with windows (see Section 
3.2.3.4), but the LS error optimality will be lost. 

Examples 3.7 and 3.8. A Least Squared Error Design of Type 3 and Type 4 
Differentiators 

Figure 3.14 shows the frequency response of a type 3 differentiator designed 
by Program 5 from (3.30) and truncated for length 21. Note the zero response at 
f =0.5, which is characteristic of all type 3 filters. Figure 3.15 shows the 
frequency response of a length-20, type 4 differentiator from (3.31). Note the 
wider frequency range of the approximation and the reduction in overshoot 
even though the length is shorter than the type 3 example. The filter coefficients 
for the differentiators are 

Length-2 1 differentiator Length-20 differentiator 

Least Squared Error Approximation with a Transition Region 
The FIR filter design problem can be made much more versatile and flexible by 
introducing a transition region between the pass band and the stopband, as 
illustrated in Fig. 3.lb. This formulation fits the way filter specifications are 
usually given much better than using one frequency to specify the separation of 
the pass band and stop band. Also, the Gibbs phenomenon can be eliminated, 
and the approximation in the pass band and stop band can be improved by the 
transition region. 

If a transition function is defined as part of the ideal response to connect the 
unity pass-band response and zero stop-band response, the shape of this 
function can be chosen to minimize the approximation error for a given length. 
The pass band is defined as 0 < f < f,, the transition region as f ,  < f < f2, and 
the stop band as f 2  < f < 0.5. The transition function H,(f) is defined over the 
transition region. A development similar to that for the simple no-transition- 
region case can give analytical formulas for optimal LS error h(n) for several 
interesting transition functions. This ideal response is shown in Fig. 3.16, with 
the frequency f given in hertz. 



0 

FIGURE 3.14. Length-21 FIR differentiator by LS error. 

0 

FIGURE 3.15. Length-20 FIR differentiator by LS error. 
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If the transition function is a simple straight line (first-order spline) connect- 
ing the pass-band response to the stop-band response, the impulse response is 

sin(n(f2 -fl)(n - MI) sin(n(f2 +flXn - MI) , O d n G N - 1 ,  
n(f2 -fiHn - M) n(n - M) 

otherwise. 
(3.32a) 

We can derive (3.32a) directly from the inverse Fourier transform of the desired 
ideal response A,(o)  by using (3.25), in much the same way as (3.28) was 
developed. An alternative approach is to observe that the ideal response of Fig. 
3.16, which has a first-order spline (straight-line) transition function, can be 
created by convolving an ideal rectangular response whose band edge is at 
( f2 + f,)/2 with a narrow rectangular function whose width is f2 - fl and whose 
height is l/(f2 - f,). This approach gives the inverse Fourier transform of the 
final desired function as being 2n times the product of the inverse transforms of 
the two rectangles. That can easily be seen by comparing the second term in 
(3.23a) to (3.29) with a band edge of the average off, and f2 and noting that the 
first term is the same as (3.29) with a total width of f2 - f,. 

If the transition function is a second-order spline (two sections of parabolas), 
the impulse response is 

otherwise. 

(3.32b) 

We can also derive (3.32b) directly from (3.25) or indirectly by convolving two 
half-width rectangles to obtain a triangle function of width f2 - f,, which is then 
convolved with the basic ideal filter response to get the desired transition 
function. 

f l  f 2  0.5 
1 f (Hz) 

Pass band Transition Stop band 
region 

FIGURE 3.16. Ideal response with a transition region. 
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We can easily generalize (3.32b) to higher-order spline transition functions. 
An optimal LS error approximation to an ideal response with a P-order spline 
transition function is given by 

(0 otherwise. 

Equation (3.32~) is derived by convolving together P rectangles of width 1/P and 
then convolving the result with the basic filter response. It is possible to create 
other P-order splines by using unequal widths as long as the final width gives the 
correct transition width. 

An alternative transition function that can result in an analytical solution 
uses sections of trigonometric functions. One useful function is the raised cosine 
defined by 

1, O < f  < f l ,  

AAf) = 1 1 + cos (;:I:))), f l < f < J ~ ,  

This definition gives an FIR filter with coefficients given by 

cos(n(f2-flXn-M) sin(n(f,+flXn-M)) O < n < N  

- 4( f, - f1),(n - M)' n(n - M) 

otherwise 

(3.33) 

This function can be generalized by adding higher-frequency cosine terms to 
give a smoother transition. It can also be combined with the spline functions to 
give a very rich class of possible transition functions for flexible design. 

The faster the coefficients h(n) decrease with increasing n, the smaller the error 
that will result when the inverse Fourier transform is truncated. Fourier 
t h e ~ r ~ ' ~ . ' ~  shows that the smoother A(o) is, the faster h(n) drops off with 
increasing n. If A(o) can be differentiated Q times with finite results, h(n) will 
drop off as a multiple of l/n to the (Q + 1)st power. Note that is the case for the 
results of (3.28) and (3.30)-(3.33). 

Using a transition region with an LS error approximation design procedure 
gives a much more flexible and useful method, yet it retains the optimality of the 
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designed filter. It is, however, ad hoc in the sense that the transition function 
must be chosen by experience and trial. The choice of transition function 
depends on the transition width, the bandwidth, and the filter length N. The 
result is in the form of a weighted version of the simple no-transition design, 
which is similar to the result of using windows (discussed in Section 3.2.3.4), but 
it is more directly related to the specifications and optimality criterion. 

The concept of transition regions can also be used to design other than low- 
pass filters. For example, it can be used with the differentiator, Hilbert 
transform, high-pass, and other designs. 

FORTRAN Program 3 designs least integral squared error linear-phase FIR 
filters with an ideal low-pass response and a transition region. It allows a choice 
of P-order splines and a raised cosine transition function. 

Example 3.9. Least Squared Error Design of a Low-pass FIR  Filter with First- 
Order Spline Transition Function 

Figure 3.17 shows the frequency response of a filter with f,  = 0.2 and 
S, = 0.3 Hz, the same pass-band and stop-band specifications as Examples 3.4 
and 3.5. This filter was designed from (3.32a). A first-order spline transition 
function and Program 3 were used. The filter coefficients are 

Summary 

This section defined an integral squared error and described a design procedure. 
One reason why the mean squared error criterion is useful is that it is a measure 
of energy. The power of a signal is a function of the square of the signal. That is 
easily seen when the signal is a voltage or current, or perhaps a force or velocity. 
Since the energy of a signal is the integral of its power, the integral squared error 
is proportional to the energy of the error. Other considerations are sometimes 
important, such as the maximum value of the error. Unfortunately, filters 
designed to minimize the integral squared error often do not have good 
maximum error characteristics if the desired response has discontinuities or 
rapid changes and no transition region. 

The basic ideal low-pass filter design problem can be solved analytically and 



FIGURE 3.17. Low-pass filter with a transition region by LS error. 
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a formula can be derived. This analytical result is simple yet powerful. It allows 
us to design arbitrary even- or odd-length, optimal LS error, linear-phase FIR 
filters by a formula easily evaluated on a pocket calculator. A length-21 example 
is given as Example 3.4. 

Analytical design formulas were derived for LS error approximations to ideal 
differentiators. Two cases were presented: one for odd length, where there is 
necessarily a zero response at w = n, and one for the wide-band case. These 
results could be extended to combine with the low-pass filter or to incorporate 
transitions regions or other modifications. 

Introducing a transition region and a transition function into the formulation 
of the ideal frequency response produced considerable improvement in the 
approximation and added flexibility in specifying the filter. Analytical solutions 

. were developed for several interesting cases with spline and trigonometric 
transition functions. This method is a powerful design algorithm. Program 3, 
which designs LS error low-pass filters with a transition region, is given in the 
appendix. 

3.2.3 Transition Regions, Weighting Functions, 
and Windows for FIR Filter Design 

Four approaches can improve the characteristics of filters designed by minimiz- 
ing the squared error and can reduce the overshoot occurring near a discontinu- 
ity. The most straightforward solution is simply to change the desired frequency 
response so that there is no discontinuity and, therefore, no Gibbs phenomenon. 
This method has already been introduced and is easily carried out by having a 
transition region in the frequency response between the pass-band region and 
the stop-band region. That would allow a transition function for the desired 
response that would connect the pass-band and stop-band ideal responses. 

The second approach is to change the error criterion in such a way as to 
reduce or remove the overshoot. That can be done by removing a region from 
the optimization. That region is then called a transition band or "don't care" 
region. We can do it by using unequally spaced samples in the discrete LS error 
method. 

The third approach changes the error measure by introducing a weighting 
function in (3.23) to weight the error more where there is overshoot and/or less 
over regions that are not as important, such as the transition region. 

The fourth method uses the result of a regular LS error design, such as (3.14), 
(3.28), (3.30), or (3.32), and directly modifies h, to reduce the overshoot, but the 
result will no longer be optimal. Since the overshoot is caused by truncating the 
finite length-L sequence (3.14) or the infinite sequence (3.25), it can be reduced by 
a more gentle truncation achieved with time-domain 

These ideas, which look at design in a broader sense, can be applied not only 
to continuous LS error problems, defined in Section 3.2.1, but to the discrete LS 
error problem of Section 3.2.2. 
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3.2.3.1 Modification of the Desired Frequency Response 
In most filtering applications there is a range of frequencies that contain the 
spectrum of the desired signal, called the pass band, and a range that contains the 
undesired signals or noise, called the stop band. To ease the design problem, we 
define a transition band between the pass band and the stop band. The wider we 
make this band, the better we can make the approximations in the pass band 
and stop bands. The simplest modification to the desired amplitude response is 
to connect the unity gain in the pass band to the zero gain in the stop band by a 
straight line (see Fig. 3.lb). The desired amplitude response is 

( pass band (0 < 0 < 4, 
o , - o  

transition region ((0, < o < o,), 

stop band (0, < o <TI). 

The solution to the integral LS error approximation problem was given in 
(3.30a). More complicated spline and trigonometric transition functions can give 
further improvement and are given in (3.30). With the discrete LS error method 
and the frequency sampling method, the introduction of the transition region 
can also significantly reduce the Gibbs phenomenon and give greater control 
over the design process. 

3.2.3.2 Use of a Transition Band 
One of the most effective modifications of the direct LS error design methods is 
to change the bands of frequencies over which the minimization is carried out. In 
Section 3.2.3.1 a transition function is defined over the transition region of 
frequencies to create a continuous ideal frequency response to be approximated. 
In this section the band of frequencies for the transition region is simply 
removed from the error definition, and the region is called the transition band or 
"don't care" band. The error in (3.23) becomes 

E = JU '  J A ( o )  - Ad(co)12 d o  + IA(o) - A,(w)12 d o .  (3.34) 
0 

This transition band will give less squared error and can give a greater 
reduction of the overshoot than a transition function can because there is no 
constraint placed on A(o)  in the transition region. Some sets of specifications, 
however, will result in strange behavior in the transition band. If "don't care" is 
stated, it must be intended. Some experimentation will probably be necessary. 
This kind of design is best performed interactively where the results of various 
modifications and weighting functions can be compared. 

3.2.3.3 Use of a Weighted Mean Squared Error Criterion 
Flexibility is added to the definition of error given in (3.23) by introducing a 
positive weighting function W ( o )  to give 
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E = IS" W ( o ) l A ( o )  - Ad(o)12 d o ,  
0 

similar to that used with the discrete LS error case in (3.21).  With this new 
function, more weight can be given to the approximating error in regions of 
greater interest or importance. Using the transition band introduced in Section 
3.2.3.2 can sometimes result in undesirable behavior of the designed filter in that 
band. In those cases it may be preferable to use a transition function with a small 
weight to place some control over the transition region. In some cases a 
transition band with weighting functions has advantages. As we noted before, it 
is very important to try and compare different design philosophies by some kind 
of interactive design and analysis system. 

3.2.3.4 Use of Window Functions in the Design of FIR Filters 
The truncation of the infinite or length-L time-domain sequence causes the 
Gibbs phenomenon at a discontinuity in the frequency domain. This truncation 
can be viewed as multiplying the prototype time-domain sequence by a 
rectangular function that has value unity for - M < n < M and zero outside 
that range. If h,(n) is the ideal prototype sequence symmetric about 0 and h(n) 
the finite truncated result, the process can be described by 

where 

with M = (N - 1)/2  for N odd. The infinite-duration impulse response hd(n), 
with values given by (3.27) and illustrated in Fig. 3.8a, is multiplied by r(n) to give 
h(n), as shown in Fig. 3.8b. The response h,(n) has the ideal desired frequency 
response of (3 .26)  and Fig. 3.1, and h(n) has the realizable frequency response 
with the undesirable overshoot. 

Multiplication of two functions in the time domain corresponds to convol- 
ution of the Fourier transforms of the two signals. Indeed, it is a good way to see 
what causes the Gibbs phenomenon. The Fourier transform of the rectangular 
function used for truncation is 

m 

R ( w )  = FT{r(n))  = r(n) e- jUn  (3 .37)  
n = - a )  

If the Fourier transforms of hd(n) and h(n) are H d ( o )  and H ( w ) ,  respectively, the 
time-domain truncation operation given in (3 .37)  is described in the frequency 
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FIGURE 3.18. The Fourier transform of a rectangular function. 

domain by 

which states that the frequency response of the finite-length filter is equal to the 
ideal frequency response convolved with a transform of the rectangular function 
given in (3.38). The frequency response of the width-N rectangular function R(w) 
near o = 0 appears as shown in Fig. 3.18. 

The result of convolving this oscillating function with the ideal low-pass 
frequency response gives the Gibbs phenomenon overshoot. We can see from 
Fig. 3.18 that as N gets larger, the width of the main part of the oscillating 
function grows narrower, although the height remains the same. 

It is the existence of and size of the oscillating side "lobes" of R(w) that cause 
the Gibbs phenomenon. An ideal R ( o )  would be smooth and, therefore, cause no 
overshoot. It is the width of the main part of R ( o )  that causes the slow transition 
from the pass band to the stop band. An ideal R ( o )  would have zero width. This 
ideal function would be a Dirac delta function that, when convolved with the 
desired low-pass filter response, would introduce no change. For a finite-length 
filter this is impossible, but it does give an ideal for R(w) to approximate. 

Six standard windows found in the literature are1-4,9.10 

1. Bartlett triangular window: 

(0, otherwise. 
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2-5. Generalized cosine windows 
(rectangular, Hanning, Hamming, and Blackman): 

( 07 
otherwise (3.41) 

6. Kaiser window with parameter b: 

otherwise. (3.42) 

The generalized cosine window has four special forms that are commonly 
used. These are determined by the parameters a, b, and c. 

Window a b c 

Rectangular 1 0 0 
Hanning 0.5 0.5 0 
Hamming 0.54 0.46 0 
Blackman 0.42 0.5 0.08 

The most straightforward of these windows is the simple rectangular window, 
which gives the simple truncation and the classical Gibbs phenomenon. The 
Bartlett or triangular window reduces the overshoot but spreads the transition 
region considerably. The Hanning, Hamming, and Blackman windows use 
progressively more complicated cosine functions to provide a smooth trun- 
cation of the ideal impulse response and a frequency response that looks 
progressively better. The best window results probably come from using the 
Kaiser window, which has a parameter j that allows adjustment of the 
compromise between the overshoot reduction and transition region width 
spreading. Pass-band and stop-band ripple and transition width can be 
converted into a filter length N and a parameter j.' The Kaiser window requires 
calculating a Bessel function. A simple subroutine that evaluates this Bessel 
function is used in Program 4 in the appendix. 

Plots of these window functions are shown in Fig. 3.19 to illustrate the 
various shapes that try to reduce the effects of the truncation without changing 
the basic characteristics of the LS error filter.'-4 

Example 3.10. Length-21 Low-pass Filter with a Hanning Window 
The filter designed in Example 3.6 is truncated by using a Hanning window 

described in (3.41) to give the results in Fig. 3.20. Note the smoother pass-band 
and greater stop-band attenuation but the wider transition region from pass 



1. Rectangular Window 
2. Bartlett Window 



n 
5. Blackman Window 

FIGURE 3.19. Window functions for linear-phase FIR filter design. 
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FIGURE 3.20. Length-21 low-pass filter with a Hanning window. 
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Real (2) 
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FIGURE 3.20. (Continued) 

band to stop band. The filter coefficients are 

Example 3.11. Length-21 Low-pass Filters with Kaiser Windows 
The flexible Kaiser window in (3.42) is used with the parameter fi equal to 4, 

6.5, and 9 to give the results in Fig. 3.21, 3.22, and 3.23, respectively. Here, the 
pass band is very smooth, and the parameter fi allows a tradeoff between 
transition width and stop-band attenuation.'q4 The coefficients are 



FIGURE 3.21. Length-21 low-pass filter with a Kaiser window, fl = 4. 
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FIGURE 3.21.  (Continued) 

Compare the coefficients resulting from the various windows and note how fast 
they decrease as n increases. 

Example 3.12. Length-101 Low-pass Filter with a Kaiser Window 
To illustrate the effects of filter length, we designed a length-101 low-pass 

filter, using the same method as Example 3.6 but with a greater length. Compare 
the results in Fig. 3.21 to that for the length-21 filter in Fig. 3.24. Increasing the 
length improves all characteristics except, of course, the implementation 
problems. 

FIGURE 3.22.  Length-21 low-pass filter with a Kaiser window, P = 6.5 



z plane 
Irnae. (2) 

(cJ 

FIGURE 3.22. (Continued) 

Summary 
This section considered four methods of modifying the straightforward LS error 
FIR filter design. The simplest and probably the best is to change the ideal 
frequency response being approximated. Introducing a transition region with a 
transition function significantly reduces the resulting approximation ripple or 
Gibbs phenomenon and still allows the use of the special formulas and IDFT 
methods of Sections 3.1, 3.2.1, and 3.2.2. 

Introducing a transition band with no contribution to the error measure 
requires solving the normal equations and does not allow using formulas or the 
IDFT because of unequally spaced frequency samples. This approach is more 
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FIGURE 3.23. Length-21 low-pass filter with a Kaiser window, j3 = 9. 
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z plane 

Image (2) 

FIGURE 3.23 .  (Continued) 

prone to numerical errors, is fairly slow, and requires considerable computer 
memory. However, when it can be used, it gives excellent approximations. Error 
weighting functions can also improve the approximation, but their use requires 
solving the normal equations. 

Time-domain window functions were shown to reduce the effects of trun- 
cation in the LS error FIR filter design procedure. Six different window 
functions were presented, and the results of the Hanning and Kaiser windows 
were shown in examples. 

W 

fa) 

FIGURE 3.24. Length-101 low-pass filter with a Kaiser window. 
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FIGURE 3.24. (Continued) 

The use of windows is a somewhat ad hoc method of altering an optimal LS 
error design to reduce the Gibbs phenomenon at the band edge. This reduction 
of the overshoot increases the mean squared error but in a way difficult to 
predict. Because of this difficulty and the discovery, by Parks and 
M ~ C l e l l a n , ' ~ ~ ~ ~ '  that the Remes exchange algorithm directly attacks the 
overshoot reduction, windows are not used as much as they once were. If the 
simplicity of design by the windowed LS error method is desired, the Kaiser 
window is probably the best and certainly the most v e r ~ a t i l e . ' , ~ ' ~ . ~ . ' ~  

Program 4 in the appendix designs the six different types of windowed filters. 
As with all the design methods, their characteristics are best understood by 
experimentally designing filters with an interactive system where the frequency 
response can be easily displayed or plotted. 

3.3 CHEBYSHEV APPROXIMATION 

Figures 3.12 and 3.13 showed peaks or overshoots in the frequency response 
that are typical of frequency sampling and LS designs. The windowing 
techniques in Section 3.2.3.4 are attempts to reduce the peaks in the error 
function (the difference between the desired frequency response and the actual 
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frequency response). By carefully applying various windows, the maximum error 
in the frequency response can be reduced. A natural question to ask is just how 
far can the maximum error be reduced? The theory of Chebyshev approxi- 
mation, when applied to the filter design problem, answers this question and 
provides algorithms to find the coefficients of a linear-phase FIR filter that has a 
frequency response with this minimum value for the maximum error. An 
approximation that minimizes the maximum error over a set of frequencies is 
called a Chebyshev  approximation."^" Filters that have the minimum value of 
the maximum error exhibit an equiripple behavior in their frequency re- 
sponse~. '~  Thus, these optimum Chebyshev filters are sometimes called 
equiripple filters. 

One of the earliest reports on the design of Chebyshev FIR digital filters was 
a General Electric report by M. A. Martin in 1962.20 Most of the papers on the 
subject were published in the early 1970s. Tufts, Rorabacher, and Moser 
published some examples in 19702'; then Tufts and Francis22 compared 
minimax designs with LS designs. Helms, in 197223, described techniques, 
including linear programming, to solve the Chebyshev approximation problem 
for filter design. In 1970, Herrmann published an article describing the 
equations that must be solved to obtain a filter with the maximum possible 
number of equal ripples24 (Later called extra-ripple25 or maximal-ripple19 
filters). Schussler, in 1970, presented the work he and Herrmann had been doing 
on the design of maximal-ripple filters at the Arden House workshop.26 
Hofstetter developed an efficient algorithm for solving the equations proposed 
by Herrmann and Schussler and presented papers with Oppenheim and Siege1 
at the 1971 Princeton conference2' and the 1971 Allerton House conference2' 
describing the algorithm and relating it to the Remes exchange algorithm. 

In 1972, at the Arden House workshop, Parks described his work with 
McClellan on a direct application of Chebyshev approximation theory to the 
filter design problem using the Remes exchange algorithm,29 and Parks and 
McClellan published a description of a design algorithm that used some of the 
computational techniques of Hofstetter's a lg~r i thm.~ '  Hersey et al. described, at 
about the same time, an interactive method for designing filters with upper and 
lower constraints on the magnitude of the frequency response3'. They also 
pointed out in their 1972 paper3' that the Remes exchange algorithm could be 
used to design FIR linear-phase filters with the Chebyshev error criterion. The 
algorithm described in reference 30 has come to be known as the Parks- 
McClellan algorithm. A comprehensive paper, published with Rabiner,19 gives 
a good summary of properties of filters designed with this algorithm. A program 
implementing the Parks-McClellan algorithm was published by the IEEE Press 
and is reprinted by permission of the IEEE as Program 6 in the appendix. 

This section begins with a review of the characteristics of FIR filters with 
linear phase and describes the four different types of filters in detail. Some basic 
ideas from the theory of Chebyshev approximation are then presented. These 
concepts lead to the equiripple property of optimum filters. The Remes 
exchange algorithm is developed and adapted to the design of those linear-phase 
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filters that best approximate a desired frequency characteristic in the Chebyshev 
sense. 

3.3.1 Four Types o f  Linear Filters 

As indicated in Section 2.2, there are four types of linear-phase FIR filters. All 
four types have a frequency response 

where ACf) is a real-valued positive or negative function. In this section the 
frequency variablef, with units of cycles per second or hertz, is used along with a 
normalized unit sampling rate in order to be consistent with the literature in this 
area. The relation between this frequency variable and the radian frequency o is 
o = 2nJ If the filter has h(n) = h(N - 1 - n), it is said to have even symmetry 
and m = 0 in (3.43). If, on the other hand, h(n) = - h(N - 1 - n), then the filter is 
said to have odd symmetry and m = 1 in (3.43). For even symmetry there are two 
types of filters corresponding to odd and even N. Similarly, for odd symmetry 
there are two additional types of filters for odd and even N .  In reference 32 it is 
shown that ACf) can always be written as a weighted sum of cosines for all four 
types of linear-phase filters. These formulas can be derived from equations (2.19), 
(2.21), and (2.24) with the use of appropriate trigonometric identities. The 
specific form of ACf) is given in Table 3.1. 

If the impulse response h(n), n = 0,. . . , N - 1, has an odd length (if N is odd), 

TABLE 3.1. Approximating Functions for Linear-Phase Filters 

Symmetry 

Even Odd 
h(n) = h(N - 1 - n). (m = 0 )  h(n) = - h(N - 1 - n),  (m = 1 )  

(N-1)/2 (N - 3)/2 

Odd Length A ( f )  = 1 a, cos 2xkf A ( f )  = sin 2nf 1 ck cos 2xkf 
(N)  ,=o k = O  

a. = h( (N - 1 ) / 2 )  co -+c(2) =2h((N - 3) /2)  

ak = 2h( -k+ (N - 1) /2 )  c ( (N - 5) /2)  = 4 h ( l )  

k =  l . . . . . ( N -  1) /2  c ( (N  - 3112) = 4h(0) 
c ( k -  1) - c ( k +  1 )  = 2h( -k+ (N - 7) /2 )  

k  = 2,.  . . , (N - 5)/2 

IN- 3)/2 

Even Length A( f )  = cOS xf 1 bk cos 2nkf 

(N)  
k s o  

bo + $ b ( l )  = 2h((N - 3)/2 
b( (N - 3112) = 4h(0) 

b(k -  1 )  + b ( k ) = 4 h ( - k +  ( N - 1 ) / 2 )  
k =  2 . .  . . , (N - 3)/2 

(N - 3)/2 

A ( f )  = sin nf 1 dk cos 2nkf 
k = o  

do - fd(1)  = 2h((N - 3) /2)  
d ( (N - 3) /2)  = 4h(0) 

- 1 )  - d(k)  = 4h(-k + ( N -  1 ) /2 )  
k  = 2, . . . , (N - 3)/2 
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there are two different linear-phase filters: 

Type 1: even symmetry, odd length 
Type 3: odd symmetry, odd length 

As shown in Table 3.1 and Fig. 2.3, the odd-symmetry, odd-length filter (type 3) 
has a frequency response that must be zero at f = 0 and at f = 0.5. That is, a type 
3 filter should not be used for either a low-pass or a high-pass design. Further, 
the type 3 filter introduces a phase shift of 90°, as shown by (3.43). 

If the impulse response h(n) has an even length (if N is even), the resulting two 
linear-phase filters are 

Type 2: even symmetry, even length 
Type 4: odd symmetry, even length 

As shown in Table 3.1 and Fig. 2.3, the odd-symmetry, even-length filter (type 4) 
has a frequency response that must be zero at f = 0 but not necessarily at 
f = 0.5. The type 4 filter will make a good highpass filter, but it should not be 
used for a low-pass filter. The even-symmetry, even-length filter (type 2) must be 
zero at f = 0.5 but not necessarily at f = 0. This filter type will make a good low- 
pass filter but not a good high-pass filter. As does the type 3 filter, the odd- 
symmetry, even-length filter (type 4) introduces a phase shift of 90°, as shown by 
(3.43). 

3.3.2 Chebyshev Approximation for Linear-Phase Design 

The desired frequency response for an ideal low-pass filter is shown in Fig. 3 . 1 ~ .  
The ideal response is real (no phase shift), exactly unity in the pass band, and 
exactly zero for the entire stop band. It is impossible for a causal FIR filter to 
have exactly zero phase (except for the trivial case when h(0) = 1 and all other 
coefficients are zero, in which case the stop-band transmission is unity). It is, 
however, possible to obtain an FIR filter with linear phase for all frequencies, as 
shown in Table 3.1. The group delay (negative of the derivative with respect to 
frequency of the phase function 16) is a constant for all frequencies for linear- 
phase filters. Further, it is impossible for an FIR filter to have exactly zero 
transmission in the entire stop band (except for the trivial filter, which has zero 
transmission for all frequencies). An acceptable frequency response, shown in 
Fig. 3.lc, has the following characteristics: 

1. Linear phase. 
2. A width Af transition band between the pass band and stop band. 
3. A deviation from unity of ACf) in the pass band of +dl. 
4. A deviation from zero of A ( f )  in the stop band of +a2. 

A more general filter design problem could have several pass bands and 
several stop bands. Some of the bands could even consist of a single point when 
specifying, for example, that the filter have a transmission zero at a specific 
frequency. Further, some of these bands may be more important than others; 
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therefore different weights should be put on different bands. The multiple bands 
are assumed to make up a compact subset of the frequency band [0,0.5]. The 
compact subset F in most applications is the union of closed intervals 
(corresponding to frequency bands) and discrete frequency points. These 
requirements for a good linear-phase filter are summarized in the following 
statement of the approximation problem for linear-phase design. 

Approximation Problem for Linear-Phase Design 
Given the following: 

A compact subset F of [0, 0.51. 
A desired real-valued function DCf), defined and continuous on F. 
A positive weight function W(f), defined and continuous on F. 
The form of A(f) ,  

. - I  

We want to minimize over ck 

by choice of ACf). 
Each of the four types of linear-phase filters in Table 3.1 is described by (3.44), 

where, by definition, 

{ 
cos nf; 

") = sin 2 n ~  

After the coefficients of A(f) are found, the impulse response of the filter can 
be determined from the simple relationships in Table 3.1. 

The problem we have stated, which minimizes the maximum deviation over a 
set of frequencies, is the Chebyshev approximation problem for designing FIR 
filters. This problem leads directly to a characterization of the optimum filter in 
terms of the alternation theorem. Only the type 1 approximation with QCf) will 
be described in the following theory. The extension to the other three types of 
filters with their corresponding Q(f) functions is s t r a i g h t f o r ~ a r d . ' ~ ~ ~ ~  

The alternation theorem states that there is a unique best Chebyshev 
approximation and that the (weighted) error of this optimum filter necessarily 
has an equiripple character. 

Alternation Theorem 
If A(f) is a linear combination of r cosine functions-that is, if 
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then a necessary and sufficient condition that A( f )  be the unique, best weighted 
Chebyshev approximation to a given continuous function D( f )  on 9 is that the 
weighted error function E(f) = WCf). [DCf) - ACf)] exhibit at least r + I 
extremal frequencies in 9. These extremal frequencies are points such that, with 
f 2 < f 2 < . - . f r < f r - 1 ,  

and 

1ECfi)I = max ECf). 
f e y  

The alternation theorem means that the best Chebyshev approximation must 
necessarily have an equiripple error function. It also states that there is a unique 
best approximation for a given set of frequencies, filter length N, and weight 
function WCf). The phrase "at least r + 1 extremal frequencies" needs some 
explanation. Since the best approximation for a given set of specifications is 
unique, there will not be one filter with r + 1 extremals and another filter with 
r + 2 extremals for the same specifications. For a given set of specifications, the 
unique best filter may have more than r + 1 extremal frequencies. If, for 
example, the optimum filter has r + 3 extremal frequencies, then by the 
uniqueness property, there cannot be a filter with only r + 1 extremals for this 
set of specijcations. 

In Fig. 3.25 the frequency response of an optimum length-13 linear-phase 
filter with even symmetry has eight extremal frequencies as required (r = 7). The 
function ACf) for this filter is a sum of seven cosines (counting zero frequency). 
There is one more extremal frequency than there are degrees of freedom in A(f ) ,  
as required by the alternation theorem. The alternation theorem characterizes 
the optimum solution so that one can be recognized, but it does not directly 
show how to choose the filter coefficients. If the eight extremal frequencies were 

6 = N - !  
2 

N =  13 A ( f l  = x a k  cos (2rrkfl 

I k = O  

8 Extremal frequenc~es 

i 

3 

FIGURE 3.25. Frequency response for length-13 filter. 
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known, the impulse-response coefficients could be found easily by solving an 
interpolation problem by the frequency-sampling techniques in Section 3.1. In 
other words, if the extremal frequencies were used in the frequency-sampling 
design with desired values of 1.0 f 6, for the pass-band frequencies and + 6, for 
the stop-band extremal frequencies, the impulse response of the optimum 
Chebyshev approximation filter would be obtained. 

The problem of designing the filter has been reduced to the problem of 
finding the extremal frequencies. The Remes exchange algorithm".18 has 
proved to be valuable in finding these extremal frequencies. 

3.3.3 The Remes Exchange Algorithm 

- The Remes exchange algorithm makes use of the fact that it is always possible to 
make the error function 

take on the values f 6 for any given set of r + 1 frequency points f,, m = 1,.  . . , 
r + l.17918 (TO simplify notation, we assume a unit weight function, but these 
results apply to a general positive weight function.) In other words, the set of 
linear equations 

has a unique solution for the coefficients c,, k = 0,.  . . , r - 1, and the amplitude. 
6, of the oscillation on the given frequencies f,. In the application of the Remes 
exchange algorithm developed by Parks and M ~ C l e l l a n , ~ ~  the set 9 of 
frequencies over which the approximation is made is an equally spaced grid with 
the number of frequency points approximately equal to 10 times the filter length. 
If 9 consisted only of the r + 1 frequencies f, in (3.49), then the approximation 
problem would be solved in one step. The coefficients ck in (3.49) would be the 
coefficients of the best approximation, and the maximum error on 9 would be 
161. This conclusion follows directly from the alternation theorem, where f, are 
the extremal frequencies and 6 is the amplitude of the oscillation. The error on 
one extremal frequency would be 6, and the error on the next extremal frequency 
would be -6. Furthermore, when 9 contains only r + 1 frequencies, 

r - 1  

max DCf) - ck cos(2nkf) = 161. 
fd I k = O  

These are the conditions for f, to be extremal frequencies. 
In most practical applications 9 contains more than r + 1 frequencies. The 

problem in these cases is to find which subset of r + 1 frequencies is the set of 
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extremal frequencies. The Remes exchange algorithm begins with a trial set of 
frequencies, as shown in Fig. 3.26, and systematically exchanges frequencies 
until the set of extremal frequencies is found. The new frequencies used in the 
next trial set are those r + 1 frequencies where the weighted error E(f) has the 
largest magni t~de .~ '  Given a trial set of frequencies 

the Remes exchange algorithm consists of the following four basic 
computations: 

1. Solve the linear equations in (3.49). This solution has an error that 
oscillates with amplitude 6, on the trial set of frequencies for the kth 
iteration. 

2. Interpolate to find the frequency response on the entire grid of 
frequencies. 

3. Search over the entire grid of frequencies to see if (and where) the 
magnitude of the error in (3.48) is larger than the magnitude of 6, found in 
step 1. 

4. If the maximum value of the error magnitude found in step 3 equals 6,, 
stop. If not, take the r + 1 frequencies where the error attains its maximum 
magnitude as the new trial set of extremal frequencies and go to step 1. 

Remes exchange 

6k increases on each iteration. The iteration stops when 6 k ~ t 0 p ~  increasing. 
At this point, 6k = yX IE(f) I and T contains the r + llextremal frequencies. 

FIGURE 3.26. Block diagram for Remes exchange. 

Trial set [ f l ,  . . . , f r + l  ) = T 

Make error E ( f )  oscillate 
on T with amplitude 6k 

No, 
7 

= max ,- lE(f)l and 
T contains the extremal 

frequencies 

l 
Take frequencies with r + 1 largest . values of ~ E ( f l  I on .F as new set 1 
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It is often easier to think of the approximation problem in terms of 
polynomials. The frequency-domain approximation problem and the poly- 
nomial problem can be shown to be equivalent by using the change of variables 

cos - '(x) 
I =  2 . 

With this change of variable, (3.44) becomes, with QCf) = 1, 

The function cos(k cos-'(x)) is indeed a p ~ l y n o r n i a l . ' ~ ~ ' ~  The Chebyshev 
polynomials Ck(x) have the form 

Ck(x) = cos(k cos- '(x)) (3.55) 

and are also used in Section 7.2.3. 
The following simple example of the Remes exchange, with a first-order 

polynomial as the approximating function, illustrates the important features of 
this technique. For a more detailed description of the Remes exchange 
algorithm, see references 17 and 18. 

Example 3.13. Remes Exchange 
The problem here is to choose the two coefficients do and dl to minimize the 

Chebyshev error 

max IxZ - (do + dlx)l. 
x s [ O , l I  

In this problem a parabola is approximated by a straight line. 
Since two functions (the constant 1 and the function x) are being used in this 

approximation problem, there will be three extremal points. The trial set of 
extremal points is denoted by 7; as in Fig. 3.27. 

The first, arbitrarily chosen, trial set is To = [0.25,0.5,1.0]. To make the error 
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oscillate on these three points, we must solve the three linear equations 

for 6 and evaluate the error 

for all x E [0, 11 to see if there are any points where the error has a magnitude 
larger than 161. 

For this trial set of points the matrix version of the linear equations in (3.56) is 

The solution to  these equations gives 60 = 0.0625 and an error function shown 
in Fig. 3.27. Since the maximum value of the error on the interval [O,l] is 0.3125, 
this trial set is not the extremal set (the error does not achieve its maximum 
magnitude on the trial set To). 

The next trial set T, is made up of those three points in [O,l] where the error 
Eo(x) achieves its maximum magnitude. Thus, 

Again, the error is made to oscillate on this trial set by solving the linear 
equations 

The solution to these equations gives 6, = 0.1171875 and an error function, 
shown in Fig. 3.27, with a maximum magnitude of 0.1328125. Since this 
maximum error is greater than 61, the trial set of points T, is not the extremal 
set. As shown in Fig. 3.27, the maximum error magnitude occurs at 0.0,0.5, and 
1.0. Thus, the next trial set is 

The error is made to oscillate on this new trial set of points by solving the linear 
equations 
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Choose do,  d l  to minimize x , m [ ~ ~ l l  ( D ( x )  - ( d o  + d l x ) l  
D ( x )  = x 2 .  

FIGURE 3.27. Example of Remes exchange. 

This time 6, = 0.125, and the maximum error is also equal to 0.125, as shown 
in Fig. 3.27. Thus, T, is the extremal point set because the error alternates in sign 
on these three points and achieves its maximum magnitude on each of these 
three points. 

Example 3.13 illustrates the principal features of the Remes exchange. The 
error is made to oscillate on a trial set of points. New points where the error is 
larger than the amplitude of the oscillation are included (exchanged). Then the 
error is again forced to oscillate on this new set with a larger amplitude of 
oscillation. The amplitude of the oscillation, 6, increases at each iteration until it 
is equal to the maximum of the error over the entire interval of interest. At thls 
point in the iterative algorithm, the points on which the error oscillates are the 
extremal points. 
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After we find the extremal points f,, we can find the coefficients ck in the 
approximation 

by solving an interpolation problem of fitting the function A ( f )  in (3.61) to the r 
known values. This procedure amounts to solving the following set of linear 
equations: 

After we find ck from (3.62), we easily calculate the impulse response values from 
Table 3.1. 

The block diagram in Fig. 3.26 shows the Remes exchange technique used to 
design FIR digital filters. This figure is taken from reference 19 where the details 
of the implementation may be found. The FORTRAN program that implements 
the algorithm in Fig. 3.26 may be found in Programs for Digital Signal 
~ r o c e s s i n ~ . ~  A listing of a slightly modified version of this program is included in 
the appendix as Program 6.  For a given set of filter specifications, the program 
formulates an equivalent approximation problem, which uses a weighted 
combination of cosines, as in (3 .44 ,  in a Chebyshev approximation problem. 
The Remes exchange is then used to find the extremal frequencies. When the 
extremal frequencies are found, the impulse response is found from the 
frequency response. 

If a filter with a length of several hundred coefficients is needed, some 
modifications of Program 6 are necessary. Usually numerical problems will first 
occur in the interpolation step (step 2 in Section 3.3.3). These problems are 
especially likely to occur with very narrow pass bands and large transition 
bands. B ~ n z a n i g o ~ ~  has developed an algorithm that can design filters with 
lengths in the thousands. The recent work of Ebert and H e ~ t e ~ ~  should be 
valuable, especially when designing long filters. They have described several 
improvements to Program 6 that significantly reduce computing time. 

3.3.4 Guidelines f o r  Using t h e  Parks-McClellan Algori thm 

Although the filters that are designed by using the Parks-McClellan algorithm 
with the Remes exchange are indeed optimum in the sense that the maximum 
weighted error is minimized on the specified compact set of the frequency axis, 
they may not possess all of the characteristics desired. There are certain basic 
limitations to the performance of any of the four different types of linear-phase 
FIR filters, as described in Section 2.2.1. Complicated relations exist between the 
various parameters involved in the filter specification, such as the band-edge 
frequencies, the attenuations in the various bands, and the filter length. This 



3.3 Chebyshev Approximation 95 

section describes the characteristics of typical low-pass filters, using examples 
and empirical formulas relating the various parameters. The discussion is then 
extended from this two-band case (one pass band and one stop band) to the 
bandpass case with three bands. 

Program 6 was used to calculate all of the examples in this section. SIG, the 
signal processing package developed by Lawrence Livermore Laboratory,12 
was used to draw the plots. 

Example 3.14. Length-21 Low-pass Filter 
In this design of a length-21 low-pass filter, all band-edge frequencies are 

given in fractions of the sampling frequency. A large pass band was used, with a 
frequency range from 0 to 0.33. The stop band was specified to begin at 0.37, and 
the errors in the pass band were given the same weight as errors in the stop band. 

After the filter is designed, a summary of the resulting filter parameters is 
printed out, as shown in Fig. 3.28. 

For this length-21 filter the amplitude function A ( o )  is the sum of 11 cosine 
terms, and, according to the theory described in Section 3.3.1, the weighted error 
should have at least 12 extremal frequencies. The magnitude response in Fig. 
3.29 exhibits these 12 extremal frequencies. The 12 points where the error 
achieves its maximum magnitude are circled in the figure. Notice that the two 
band edges 0.33 and 0.37 are extremal frequencies. This must always be the 
case.33 In this example f = 0.0 and f = 0.5 are extremal frequencies; One of 
these two (either 0.0 or 0.5) must be always an extremal frequency, but it is not 
necessary that both be extremal f r e q ~ e n c i e s . ~ ~  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f i n i t e  i m p u l s e  r e s p o n s e  ( f i r )  

l i n e a r  p h a s e  d i g i t a l  f i l t e r  d e s i g n  
r e m e z  e x c h a n g e  a l g o r i t h m  

b a n d p a s s  f i l t e r  

f i l t e r  l e n g t h  = 2 1  

* * * * *  i m p u l s e  r e s p o n s e  * * * * *  
h (  1) = 0 . 1 8 2 5 5 4 3 9 e - 0 1  = h (  2 1 )  
h (  2 )  = 0 . 5 5 1 3 6 7 5 5 e - 0 1  = h (  2 0 )  
h (  3 )  = - 0 . 4 0 9 1 0 7 2 8 e - 0 1  = h (  1 9 )  
h (  4 )  = 0 . 1 4 9 3 0 8 5 5 e - 0 1  = h (  1 8 )  
h (  5 )  = 0 . 2 7 5 6 8 5 8 4 e - 0 1  = h (  1 7 )  
h (  6 )  = - 0 . 5 9 4 0 7 7 9 7 e - 0 1  = h (  1 6 )  
h (  7 )  = 0 . 4 4 8 4 1 8 4 1 e - 0 1  = h (  1 5 )  
h (  8 )  = 0 . 3 1 9 0 2 6 6 0 e - 0 1  = h (  1 4 )  
h (  9 )  = -0 .14972545e+OO = h  ( 1 3 )  
h ( 1 0 )  = 0.25687239e+OO = h (  1 2 )  
h ( l 1 )  = 0.69994062e+OO = h (  11) 

b a n d  1 b a n d  2  
l o w e r  b a n d  e d g e  0 .  0 . 3 7 0 0 0 0 0  
u p p e r  b a n d  e d g e  0 . 3 3 0 0 0 0 0  0 . 5 0 0 0 0 0 0  
d e s i r e d  v a l u e  1 . 0 0 0 0 0 0 0  0 .  
w e i g h t i n g  1 . 0 0 0 0 0 0 0  1 . 0 0 0 0 0 0 0  
d e v i a t i o n  0 . 0 9 8 8 6 9 7  0 . 0 9 8 8 6 9 7  
d e v i a t i o n  i n  db 0 . 8 1 8 9 2 3 8  - 2 0 . 0 9 8 7 3 2 0  

FIGURE 3.28. Filter parameters for length-21 low pass. 
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F r e q u e n c y  

FIGURE 3.29. Magnitude response for length-21 low pass. 

The unit-sample response for this example is shown in Fig. 3.30. This is a type 
1 filter with an odd length and a positive symmetry. The frequency response is 
not forced to be zero at either f = 0.0 or at f = 0.5. 

3.3.5 Design Formulas 

For a low-pass filter the following five parameters are of interest: 

N Filter length. 
f, The edge of the pass band specified as a fraction of the sampling frequency. 
f, The edge of the stop band specified as a fraction of the sampling frequency. 
b ,  The deviation from unity in the pass band. 
6 ,  The deviation from zero in the stop band. 



3.3 Chebyshev Approximation 97 

T i  m e  

FIGURE 3.30. Unit-sample response for length-21 low pass. 

KaiserL9 has developed an empirical formula relating these parameters, using 
Af =f, - f, for the relative or normalized transition width. 

When 6, = a,, (3.63) simplifies to 

where the stop-band attenuation in decibels is dB = -20 logLo6,. 
Formula (3.63) gives a good initial value for the filter length N in most cases 

when the bandwidth is neither extremely wide nor extremely narrow. During the 
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design of a very narrow pass band, the stop-band behavior governs the filter 
length (most of the frequency characteristic is stop band). Another empirical 
formula applies: 

and, as before, dB = -20 logloS2. 
During the design of notch filters (or a low-pass filter with a very wide pass 

band), the pass-band ripple governs the filter length, and the empirical formula 
for filter length is 

Formulas (3.63), (3.65), and (3.66) are easy to remember, and they provide a 
reasonable estimate for the filter length N. However, if a programmable 
calculator or a computer is available for estimating N, then the more accurate 
formulas provided in references 1 and 19 should be used. 

Example 3.15. Length-20 Low-pass Filter 
In this design of a length-20 low-pass filter, all band-edge frequencies are 

again given in fractions of the sampling frequency. The same band-edge 
frequencies as in Example 3.14 were used. The errors in the pass band were given 
the same weight as the errors in the stop band. 

............................................................ 
f i n i t e  i m p u l s e  r e s p o n s e  ( f i r )  

l i n e a r  p h a s e  d i g i t a l  f i l t e r  d e s i g n  
remez e x c h a n g e  a l g o r i t h m  

b a n d p a s s  f i l t e r  

f i l t e r  l e n g t h  = 20 

* * * * *  i m p u l s e  r e s p o n s e  ***** 
h (  1) = 0.48411224e-01 = h (  20 )  
h (  2 )  = 0.13537414e-01  = h (  1 9 )  
h (  3 )  = -0.39344054e-01 = h (  1 8 )  
h (  4)  = 0.53151824e-01 = h (  1 7 )  
h (  5 )  = -0.31608246e-01 = h (  1 6 )  
h (  6 )  = -0.25162734e-01 = h (  1 5 )  
h (  7 )  = 0.83330631e-01 = h (  1 4 )  
h (  8)  = -0.86372212e-01 = h (  1 3 )  
h (  9)  = -0.34074463e-01 = h (  1 2 )  
h ( 1 0 )  = 0.56718868e+00 = h (  11) 

b a n d  1 b a n d  2  
l o w e r  b a n d  e d g e  0 .  0 .3700000 
u p p e r  b a n d  e d g e  0.3300000 0.5000000 
d e s i r e d  v a l u e  1 . O O O O O O O  0 .  
w e i g h t i n g  1 .0000000 1 . O O O O O O O  
d e v i a t i o n  0 .0981161 0 .0981161 
d e v i a t i o n  i n  db 0.8129656 -20.1651917 

FIGURE 3.31. Length-20 low pass, Example 3.15. 
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A summary of the resulting filter parameters is shown in Fig. 3.31. The 
resulting error of 0.983 was slightly less than the error with the length-21 filter of 
Example 3.14. Even though fewer cosine terms are used for this length-20 filter 
(10 are used as shown in Table 3.1), the weighting term preceding the sum gives 
an extra stop-band zero. In Fig. 3.32 the filter has the necessary 11 extremal 
frequencies and the zero at  f = 0.5 that always results with this type 2 filter (even 
length and positive symmetry). Both this filter and that in Example 3.14 have 
three stop-band zeros and eight extremal frequencies in the pass band. This 
example shows that a filter that is shorter by one coefficient may have a better 
response. 

The impulse response, shown in Fig. 3.33, has two middle samples with the 
same value. That always happens with a type 2 filter because there is no central 
Sample. A delay of 9.5 samples rather than 10.0 in Example 3.14, occurs with this 
filter. The half-sample delay for even-length filters must be taken into account 
when using this filter in a system. 

F r e q u e n c y  

FIGURE 3.32. Magnitude response for length-20 low pass. 
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FIGURE 3.33. Unit-sample response for length-20 low pass. 

Example 3.16. Low-pass Filter with Echoes 
The low-pass filter with parameters shown in Fig. 3.34 and unit-sample 

response shown in Fig. 3.35 indicate the possibility of echoes in the pulse 
response of the filter. This filter has a sharp cutoff (a narrow transition band) and 
a large amplitude ripple in the pass band. As shown in reference 16, the large 
pass-band ripple results in side lobes or echoes in the impulse response. The 
amplitude of these echoes is directly proportional to the amplitude of the pass- 
band ripple. For this example the echoes are located at 2 samples and at 52 
samples after the beginning of the impulse response. These echoes can be 
eliminated by redesigning the filter with a wider transition band and, therefore, a 
smaller pass-band ripple (assuming that the same 4 0  dB of attenuation is needed 
in the stop band). However, if a transition band as narrow as this one is needed, 
then the unique best Chebyshev approximation must have echoes in the impulse 
response. Filters designed by windowing methods usually do not have such large 
echoes. Most windows are small near the ends, thus attenuating the impulse 
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f i n i t e  i m p u l s e  r e s p o n s e  ( f i r )  
l i n e a r  p h a s e  d i g i t a l  f i l t e r  d e s i g n  

r e m e z  e x c h a n g e  a l g o r i t h m  
b a n d p a s s  f i l t e r  

f i l t e r  l e n g t h  = 5 5  

l o w e r  b a n d  e d g e  
u p p e r  b a n d  edge 
desired v a l u e  
w e i g h t i n g  
d e v i a t i o n  
d e v i a t i o n  i n  db 

* *  i m p u l s e  r e s p o n s e  * * * * *  
= - 0 . 9 7 7 5 9 6 5 5 e - 0 2  = h (  5 5 )  
= 0 . 2 4 7 9 2 0 7 1 e - 0 1  = h (  5 4 )  
= 0 . 6 5 4 7 7 3 2 7 e - 0 1  = h (  5 3 )  
= 0 . 2 3 8 2 0 4 9 5 e - 0 1  = h (  5 2 )  
= - 0 . 2 1 1 4 7 8 8 4 e - 0 1  = h (  5 1 )  
= 0 . 8 9 2 9 4 0 0 7 e - 0 2  = h (  5 0 )  
= 0 . 9 9 0 8 3 0 7 3 e - 0 2  = h (  4 9 )  
= - 0 . 1 7 1 8 9 4 4 9 e - 0 1  = h (  4 8 )  
= 0 . 8 6 8 5 6 7 6 4 e - 0 2  = h (  4 7 )  
= 0 . 7 9 5 0 6 6 0 8 e - 0 2  = h (  4 6 )  
= - 0 . 1 7 9 6 9 9 0 4 e - 0 1  = h (  4 5 )  
= 0 . 1 1 3 2 4 0 5 0 e - 0 1  = h (  4 4 )  
= 0 . 7 4 1 5 4 0 6 4 e - 0 2  = h (  43)  
= - 0 . 2 1 1 4 0 9 7 0 e - 0 1  = h (  4 2 )  
= 0 . 1 5 4 7 8 0 4 8 e - 0 1  = h (  4 1 )  
= 0 . 7 1 8 0 4 9 6 6 e - 0 2  = h (  4 0 )  
= - 0 . 2 6 7 9 4 9 2 3 e - 0 1  = h (  3 9 )  
= 0 . 2 2 2 0 9 0 1 3 e - 0 1  = h (  3 8 )  
= 0 . 7 2 4 5 5 1 4 1 e - 0 2  = h (  3 7 )  
= - 0 . 3 6 6 3 6 7 2 1 e - 0 1  = h (  3 6 )  
= 0 . 3 4 4 4 2 5 2 2 e - 0 1  = h (  3 5 )  
= 0 .73146555e-02  = h (  3 4 )  
= - 0 . 5 7 8 4 8 4 7 6 e - 0 1  = h (  3 3 )  
= 0 . 6 4 4 8 5 0 2 8 e - 0 1  = h (  3 2 )  
= 0 . 7 3 6 8 8 9 3 4 e - 0 2  = h (  3 1 )  
= - 0 . 1 4 1 1 4 8 9 4 e + 0 0  = h (  3 0 )  
= 0 . 2 7 1 7 7 6 8 0 e + 0 0  = h (  2 9 )  
= 0 . 6 7 4 0 6 1 1 2 e + 0 0  = h (  2 8 )  

b a n d  1 b a n d  2  
0 .  0 . 3 5 0 0 0 0 0  
0 . 3 3 0 0 0 0 0  0 . 5 0 0 0 0 0 0  
1 . 0 0 0 0 0 0 0  0 .  
1 . 0 0 0 0 0 0 0  2 0 . 0 0 0 0 0 0 0  
0 . 1 8 6 3 6 3 4  0 . 0 0 9 3 1 8 2  
1 . 4 8 4 3 5 4 3  - 4 0 . 6 1 3 3 8 4 2  

FIGURE 3.34 .  Parameters for low-pass with echoes. 

response at the ends. A filter designed with windowing cannot, for the same 
stop-band attenuation and the same transition width, have any smaller pass- 
band error than this filter. The shape of the pass band will be different, and the 
maximum deviation from unity will be larger than for the unique optimum filter 
unless the window design is the best Chebyshev approximation with the 
required number of extremal frequencies. 

Example 3.17. A Length-21 Bandpass Filter 
In this example a length-21 filter is designed with three bands: one pass band 

ahd two stop bands. The errors in all three bands are weighted in the same way, 
as shown in Fig. 3.36. The two transition bands for this bandpass filter have the 
same width, 0.04. This width is identical to that of the low-pass filters in 
Examples 3.14 and 3.15. The error here is only slightly larger than in the low- 
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FIGURE 3.35. Unit-sample response for filter with echoes. 

pass case. The magnitude response in Fig. 3.37 shows that the error has 12 
extremal frequencies as required. Actually, the alternation theorem states that 
the length-21 filter must have at least 12 extremal frequencies. Reference 19 
shows that it is possible to have more than 12. 

This filter behaves as expected. However, the frequency response has only 
seven places, excluding f = 0.0 and f = 0.5, where the derivative is zero. It is 
possible to have a zero derivative at nine frequencies. This zero derivative and 
resulting local maximum (or minimum) may occur in the transition band and 
lead to unexpected results, as illustrated in Example 3.18. 

Example 3.18. A Bandpass Filter with Transition Band Peak 
We obtained this example by slightly modifying the specifications for the 

length-21 bandpass filter in Example 3.17. The first transition band was widened 
from 0.04 to 0.17, and the second transition was reduced from 0.04 to 0.03. The 
resulting filter parameters (Fig. 3.38) indicate that a reasonable design has been 
obtained. The error is slightly larger than with both transition bands equal to 
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f i n i t e  i m p u l s e  r e s p o n s e  ( f i r )  
l i n e a r  p h a s e  d i g i t a l  f i l t e r  d e s i g n  

r e m e z  e x c h a n g e  a l g o r i t h m  
b a n d p a s s  f i l t e r  

f i l t e r  l e n g t h  = 2 1  

*****  i m p u l s e  r e s p o n s e  * * * * *  
h (  1) = 0 . 4 6 6 7 7 5 8 0 e - 0 2  = h (  2 1 )  
h (  2 )  = 0 . 9 6 7 5 9 4 7 0 e - 0 2  = h (  2 0 )  
h (  3 )  = - 0 . 9 0 1 8 1 3 2 8 e - 0 1  = h (  1 9 )  
h (  4 )  = - 0 . 2 5 7 5 0 4 8 6 e - 0 1  = h (  1 8 )  
h (  5 )  = 0 . 4 5 5 9 0 4 4 2 e - 0 1  = h (  1 7 )  
h (  6 )  = - 0 . 1 0 3 0 8 8 0 6 e - 0 1  = h (  1 6 )  
h (  7 )  = 0 . 1 1 0 3 8 4 7 9 e + 0 0  = h (  1 5 )  
h (  8 )  = 0 . 1 2 5 9 6 3 3 2 e - 0 1  = h (  1 4 )  
h (  9 )  = - 0 . 2 8 5 8 9 7 1 1 e + 0 0  = h (  1 3 )  
h ( 1 0 )  = - 0 . 1 7 3 4 3 4 7 1 e - 0 1  = h (  1 2 )  
h ( l 1 )  = 0 . 3 8 5 7 7 7 2 4 e + 0 0  = h (  1 1 )  

b a n d  1 b a n d  2  
l o w e r  b a n d  e d g e  0 .  0 . 1 8 0 0 0 0 0  
u p p e r  b a n d  e d g e  0 . 1 4 0 0 0 0 0  0 . 3 3 0 0 0 0 0  
d e s i r e d  v a l u e  0 .  1 . O O O O O O O  
w e i g h t i n g  1 . 0 0 0 0 0 0 0  1 . 0 0 0 0 0 0 0  
d e v i a t i o n  0  . l o 7 3 5 4 6  0  . l o 7 3 5 4 6  
d e v i a t i o n  i n  db - 1 9 . 3 8 3 5 8 6 9  0  . a 8 5 7 3 4 6  

FIGURE 3.36. Bandpass filter parameters. 

b a n d  3  
0 . 3 7 0 0 0 0 0  
0 . 5 0 0 0 0 0 0  

0.04, but otherwise the filter seems to be a good bandpass filter. The unit-pulse 
response in Fig. 3.38 gives the unique best Chebyshev approximation on the 
frequency bands specified. On two transition bands there is no control of the 
error. These "don't care" regions should always be checked to verify that the 
frequency response has the expected monotonic behavior. 

In this example, as in Example 3.16, a local maximum (or minimum) in a 
transition band is possible because not all of the places where the derivative is 
zero occur in the specified bands. Figure 3.39 shows that there is a local 
maximum in the first transition band, which gives a filter with quite different 
characteristics than expected. This phenomenon has been studied,36 and some 
suggestions have been made to reduce the possibility of transition band peaks. 
The method recommended in reference 36 makes use of (3.63), the formula 
relating the transition width Af and the errors 6, and 6,. If there are two 
transition bands, Af, and Af,, as in Example 3.18, with S, and 6, the deviations 
on both sides of transition Af, and with S2 and 6, the deviations on both sides of 
transition Af,, we first calculate 

and 



l********************************************************** 
f i n i t e  i m p u l s e  r e s p o n s e  ( f i r )  

l i n e a r  p h a s e  d i g i t a l  f i l t e r  d e s i g n  
r e m e s  e x c h a n g e  a l g o r i t h m  

b a n d p a s s  f i l t e r  

f i l t e r  l e n g t h  = 2 1  

***** i m p u l s e  r e s p o n s e  ***** 
h (  1) = -0 .21529701e+00  = h (  2 1 )  
h (  2 )  = - 0 . 2 2 9 5 3 7 6 1 e t 0 0  = h (  2 0 )  
h (  3 )  = 0 .54982297e-01  = h (  1 9 )  
h (  4) = 0 .44166148e+00  = h (  1 8 )  
h (  5) = 0.69435006e+OO = h (  1 7 )  
h (  6 )  = 0 . 1 1 3 9 4 2 7 1 e t 0 0  = h (  1 6 )  
h (  7 )  = - 0 . 7 1 5 4 2 7 1 0 e t 0 0  = h (  1 5 )  
h (  8 )  = -0 .10141391e+01  = h( 14) 
h (  9 )  = -0.71523160e+OO = h (  1 3 )  
h ( 1 0 )  = 0.66042960e+OO = h (  1 2 )  
h ( l 1 )  = 0 . 1 7 3 8 1 0 1 2 e t 0 1  = h( 11) 

b a n d  1 b a n d  2  b a n d  3  
l o w e r  b a n d  e d g e  0 .  0 .2500000  0 .4000000  
u p p e r  b a n d  e d g e  0 .0800000  0 .3700000  0 . 5 0 0 0 0 0 0  
d e s i r e d  v a l u e  0 .  1 . O O O O O O O  0 .  
w e i g h t i n g  1 . 0 0 0 0 0 0 0  1 . 0 0 0 0 0 0 0  1 . 0 0 0 0 0 0 0  
d e v i a t i o n  0  . I 1 0 4 3 1 3  0  - 1 1 0 4 3 1 3  0 . 1 1 0 4 3 1 3  
d e v i a t i o n  i n  db -19 .1381569  0 .9098340  -19 .1381569  

FIGURE 3.38. Parameters for transition peak example. 
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One of these quantities will be larger than the other and will be the major factor 
in determining filter length. If N 2  is larger than N , ,  as in Example 3.18, the 
"modified stop-band" method3'j suggests reducing the width Af, by moving the 
stop-band edge frequency closer to the pass-band edge until N ,  and N 2  are 
approximately equal. Another approach, which does not allow exact specificat- 
ion of band-edge frequencies, is to ensure that all possible zeros of the derivative 
occur in the specified bands (maximal-ripple filter). Alternatively, rather than a 
transition band where there is no control of the error, a band can be used with a 
small weight on the error. There are other approaches that always put 
constraints on all frequencies and thereby guarantee that there will be no 
unexpected results in transition  band^.^',^'.^^ When linear programming is used 
to design the filter, an upper constraint on the response in the transition band 
can easily be specified.39 When the Parks-McClellan algorithm is used for 
bandpass filters, the frequency response should always be examined in the 
transition bands, especially when there is a big variation in the widths of the 
transition bands, as in Example 3.18. 

F r e q u e n c y  

FIGURE 3.39. Overall frequency response with transition peak. 
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Summary 

Filters that minimize the Chebyshev error measure necessarily have an 
equiripple characteristic for the weighted error function. The unique best 
Cheyshev filter must have at least one more extremal frequency (ripple) than the 
number of degrees of freedom in the impulse response: N / 2  for even length N, 
and (N + 1)/2 for odd N. 

The Remes exchange used in the Parks-McClellan algorithm provides an 
efficient method for designing Chebyshev equiripple filters. Filters can be 
designed with several pass bands and stop bands with different weighting in each 
band by using Program 6 in the appendix. This FORTRAN program can be 
modified easily to accommodate an arbitrary desired function and an arbitrary 
weight function. 

This section provided several examples to illustrate special characteristics of 
Chebyshev equiripple filters and to indicate possible pitfalls in designing these 
filters. 

3.4 DESIGN OF MAXIMALLY FLAT 
(BUTTERWORTH) FILTERS 

When the filter tolerance scheme is stated in terms of the maximum allowable 
deviation from unity in the pass band and the maximum allowable deviation 
from zero in the stop band, the optimum filter has an equiripple magnitude 
characteristic (see Section 3.3). This equiripple characteristic can lead to 
"echoes" in the impulse response, as shown by Example 3.16, and is thus not 
always the most desirable magnitude shape. A smoother frequency magnitude 
characteristic leads to an impulse response with smaller amplitudes in the tails of 
the impulse response. The maximally flat, or Butterworth, FIR filter may be a 
useful alternative to the equiripple designs of Section 3.3. 

3.4.1 Derivation of the Maximally Flat Linear-Phase 
Low-Pass Filter 

The frequency response of a type 1 linear-phase filter has the form 
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The coefficients in (3.67) are chosen to satisfy the following conditions: 

where k is a constant chosen to give the desired amount of flatness at f = 0 and 
f = 0.5. 

With the change of variable x = cos(2nf), described in Section 3.3.3, G(f) in 
(3.68) becomes 

Condition (3.70) requires that P(x) have a zero of order k at x = 1, and condition 
(3.71) requires that P(x) - 1 have a zero of order (N + 1)/2 - k at x = 0. 
Herrmann40 has given the explicit, closed-form expression for a polynomial 
satisfying these conditions: 

where ( k+z - l )  represents the binomial coefficient. 
In applications using (3.73) for a low-pass filter, the pass-band edge cannot be 

specified exactly. The parameter k can be used to indirectly control the location 
of the band edge. A large value of k gives a smooth frequency response at zero 
frequency and gives a wide-band filter. A small value of k puts more emphasis on 
smoothness at f = 0.5 and thus gives a narrower pass band. Hermann40 has 
related k to the desired half-power, or cutoff, point x = x,, using 

where [y] is the greatest integer less than y. 
After the polynomial P(x) is calculated, the impulse response may be 

calculated by interpolating GCf) to the frequency response P(cos(2nf)) in a 
manner similar .to that used in the Parks-McClellan implementation of the 
Remes exchange. A program, written by J. F. Kaiser, that implements the 
foregoing procedure may be found in reference 9. 
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3.4.2 Smooth Pass Bands and Equiripple Stop Bands 

Recently, a new class of FIR linear-phase bandpass filters with smooth pass 
bands has been de~cribed.~' These filters have all their zeros on the unit circle 
with an equiripple stop-band behavior. The design of these filters is quite fast 
since, as in the case of the maximally flat filters, there is a closed-form expression 
for the response. These formulas are based on Zolatarev polynomials and are 
described in detail in reference 41. The Chebyshev polynomials described in 
Section 3.3.2 are a special case of the Zolotarev polynomials. These Zolotarev 
filters combine the smooth pass band of the maximally flat filters with the 
equiripple response of the Chebyshev filters. They are the FIR version of 
Chebyshev type 2 or inverse Chebyshev IIR filters described in Chapter 7. 

Summary 

This section described an alternative to the equiripple frequency characteristic. 
The maximally flat designs do not have as small deviations from the ideal 
response of unity in the pass band and zero in the stop band as do the 
Chebyshev designs, but they do have a smoother frequency response and an 
impulse response that has smaller amplitude tails than the Chebyshev designs. 
There are FIR filters that combine the Chebyshev-type equiripple stop band 
with a smooth Butterworth-type pass band based on Zolotarev polynomials. 
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Minimum-Phase and 
Complex Approximation 

The advantage of linear-phase filters, as discussed in Chapter 2, is that the group 
delay is a constant for all frequencies. In other words, there is no delay distortion 
for linear-phase filters. The problem with linear-phase filters, however, is that 
this constant delay is always equal to (N - 1)/2, where N is the filter length. 
When a large attenuation is required in the stop band and a sharp cutoff is 
desired, N must be quite large (see Section 3.3). Thus, linear-phase filters with 
large stop-band attenuation and a sharp cutoff must have a large, but constant, 
delay. This large delay could be a major drawback of a filter, for it could cause 
instability if the filter were inside a feedback loop in a digital control system, 
difficulties in a telephone network (such as delays when using a satellite link), or 
the loss of large sums of money when trying to predict cycles in the stock market. 

In many applications the ideal filter would have a large stop-band at- 
tenuation, a sharp cutoff, and zero phase shift (zero delay). However, such a filter 
is mathematically impossible. When a filter with less delay is desired, the 
minimum-phase filter is a good choice. Minimum-phase filters have all of their 
zeros inside or possibly on the unit circle. A minimum-phase filter can be 
obtained from a linear-phase filter by reflecting all of the zeros that are outside 
the unit circle to the inside of the unit circle. In other words, those zeros located 
at z = rej8(r > 1) are changed to zeros located at z = e-j8/r. The resulting 
modified linear-phase filter will have minimum phase and will have the same 
magnitude (except for a scale factor) as the linear-phase filter. However, the 
minimum-phase filter obtained from the linear-phase filter in this way may not 
have the best possible magnitude characteristic. 

This chapter discusses minimum-phase filter design in detail. The basic 
approach is essentially the same as in reference 1. Although other methods have 
been none are clearly superior to the more direct approach of 
reference 1. The optimum-magnitude characteristic for a minimum-phase filter 
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is characterized in terms of a minimum-phase alternation theorem. Minimum- 
phase filters with desirable magnitude characteristics are designed and com- 
pared with their linear-phase counterparts in terms of delay and magnitude 
characteristics. 

Although the minimum-phase filter has a smaller group delay (minimum 
delay), the delay is not a constant for all frequencies, as it is for linear-phase 
filters. Another alternative, in addition to the linear- and minimum-phase 
designs, is the direct design with a complex desired function. A direct complex 
approximation is also required when the phase must be specified, as in the 
design of equalizers. In this chapter the complex approximation problem is 
formulated in such a way that linear programming may be used for the design. 
An example with approximately constant delay, which is less than the delay 
resulting from linear-phase design, is given. Complex approximation is also 
applied to the design of FIR equalizers. 

4.1 OPTIM UM-MAGNITUDE CHEBYSHEV DESIGN 

A length-N FIR filter with unit-pulse response ho, h,, . . . , h, has a frequency 
response 

The squared magnitude of the frequency response in (4.1) is 

where the a, coefficients depend on the unit-pulse response values, h,. 
One's initial reaction to (4.2) is to try using the programs already developed 

for linear-phase design to design filters with a desirable squared magnitude, 
since these programs work with sums of cosines just like (4.2). A major 
stumbling block in such an approach is the complicated nonlinear relationship 
between the cosine coefficients (the an's) in (4.2) and the unit-pulse response of 
the corresponding filter [the h,'s in (4.1)]. A simple length-2 example illustrates 
this nonlinear relationship. 

Example 4.1 A Length-2 Magnitude Characteristic 
When N = 2, the squared magnitude of the filter's frequency response is 
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In other words, the nonlinear relation between the h's and the a's in (4.1) and 
(4.2) is, in this example, 

a, = hi + h: and a, = 2hoh,. (4.6) 

For longer filters the nonlinear relationships between coefficients become far 
too complicated to solve easily for the h's. An alternative procedure that requires 
factoring a polynomial (also a nonlinear operation) is described in Section 4.1.2. 

4.1.1 Characterization of Optimum-Magnitude Filters 

The optimum-magnitude response has an equiripple characteristic as outlined 
in what follows. The squared magnitude response, shown in Fig. 4.1, is optimum 
in the sense described in the alternation theorem for the minimum-phase case, 
given next.4 

Minimum-Phase Alternation Theorem 
Given K = hl/h2, 6, is minimum if and only if D( f )  - IH( f)l = E( f )  has at 
least N + 1 extremal frequencies on B, where 

N is the filter length = (number of coefficients) 
6, is the pass-band deviation 
6, is the stop-band deviation 
B, is the set of pass-band frequencies 
B, is the set of stop-band frequencies 

FIGURE 4.1. Optimum squared magnitude. 
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and 

This theorem can be used to identify an optimum-magnitude response. For 
example, a length-7 linear-phase (type 1) filter has a frequency response 

where the amplitude, as described in Section 2.2, is 

The alternation theorem in Section 3.3 states that ACf) must have at least five 
extremal frequencies, as shown in Fig. 4.2a. The squared magnitude of the 

\ 5 extrernals 

\ 6 extrernals 

8 extremals 

,f 
0.5 

FIGURE 4.2. Linear-phase versus optimum magnitude. (a) Amplitude for length-7 linear-phase 
filter; (b) squared magnitude for filter in (a); and (c) optimum squared magnitude for length-7. 
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frequency response 

is shown in Fig. 4.2b. The error function E ( f )  described in the minimum-phase 
alternation theorem has only six extremal frequencies, as indicated in the figure. 
Even though this filter has an  equiripple magnitude characteristic, it does not 
have the best possible magnitude characteristic in the sense of the minimum- 
phase alternation theorem. The best possible magnitude characteristic for a 
length-7 filter would have at least eight extremals, as illustrated in Fig. 4 . 2 ~ .  The 
filter with this optimum magnitude would not, however, have the desirable 
linear-phase characteristic. Instead it would be designed to have all of its zeros 
either inside the unit circle or possibly on the unit circle-that is, to have 
minimum phase. 

4.1.2 Design Procedure 

The design procedure described here was first proposed by Herrmann and 
Schiissler' and involves factoring a polynomial. There are several other 
approaches,2'3 but this procedure is easier to describe and gives filters that are as 
good as those designed by other methods. The three steps required for the design 
of a length-N minimum-phase filter are as follows: 

1. Design a length = (2N - 1 )  linear-phase (type 1 )  filter, obtaining ACf) as a 
sum of N cosines. 

2. Scale the resulting filter by adding 6; so that A ( f )  + 6; is positive, where 
6; is the stop-band error for the linear-phase filter, as shown in Fig. 4.3. 

3. Factor the transfer function of the scaled filter in step 2,  keeping all of the 
zeros that are inside the unit circle and one each of the double zeros on the 
unit circle. 

These three steps are illustrated for a length-1 1 minimum-phase filter in Fig. 
4.3. As described in Section 2.2.3, the linear-phase transfer function has roots 
with mirror-image symmetry (see Section 2.2.3). In Fig. 4 . 3 ~  there are 20 roots, 
14 of which are on the unit circle. The scaling in step 2 (see Fig. 4.3b) results in 
seven double zeros on the unit circle and does not disturb the mirror-image 
symmetry of the remaining six roots. Step 3 (see Fig. 4 . 3 ~ )  results in seven single 
zeros on the unit circle and three roots inside the unit circle that shape the pass 
band of this optimum-magnitude minimum-phase filter. 

When the requirement for linear-phase is dropped along with the required 
symmetry of the impulse response, there may be a considerable saving in filter 
length for the same magnitude performance, perhaps as high as a factor of 2. The 
actual saving achieved depends on the specific type of filter being designed. For 
example, if the desired filter has a very narrow pass band, the linear-phase filter 
designed in step 1 will have all of its 2(N - 1 )  zeros on the unit circle. Then the 
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A(n t 

(1) Design N = 21 linear phase 

(2) Scale A(fl  positive 

(3) Factor mirror image polynomial 
HI is optimum, length 11 filter 

FIGURE 4.3. Design steps for optimum-magnitude, minimum-phase filter. (1) Design N = 21 
linear phase. (2) Scale A 0  positive. (3) Factor mirror image polynomial. H ,  is optimum length-11. 

scaling in step 2 will result in N - 1 double zeros on the unit circle, so step 3 will 
give a filter with N - 1 single zeros on the unit circle. This optimum-magnitude 
minimum-phase filter has linear phase! In this special case of a very narrow pass 
band, the linear-phase filter is also an optimum-magnitude, minimum-phase 
filter with no savings as a result. Any linear-phase filter with all of its zeros on 
the unit circle is also an optimum-magnitude, minimum-phase filter. 
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The other extreme is the type of filter with a very narrow stop band (e.g., a 
notch filter). It is possible to reduce the length required for linear phase by more 
than a factor of 2, as shown in Fig. 4.4. Figure 4 . 4 ~  illustrates a length-21, linear- 
phase notch filter with a 1.2-dB pass-band ripple and a 30-dB notch with pass- 
band edges a t  f = 0.21 and f = 0.29. A length-9, minimum-phase, optimum- 
magnitude filter was designed to have the same band edges, about the same 
pass-band ripple (1.1 dB), and a 45-dB notch, as shown in Fig. 4.4b. The group 
delay of the linear-phase notch filter was a constant 10 samples for all 
frequencies. The group delay for the minimum-phase notch was much smaller, 
varying between - 0.5 and + 2.0 samples. 

The major difficulty in this method of minimum-phase filter design is in step 
3, which requires factoring a polynomial whose order is twice the order of the 
desired transfer function. If we use special properties of the transfer function to 
be factored (e.g., that the locations of the unit circle zeros are known from the 
frequency domain), it is possible to design reasonably long filters (lengths greater 

I I I I I 
0 0.1 0.2 0.3 0.4 0.5 

Frequency 

I I I I I 
0 0.1 0.2 0.3 0.4 0.5 

Frequency 

FIGURE 4.4. Notch filter comparison. (a) Linear-phase filter, W = 21, 1.2dB passband ripple, 
30dB notch, passband edges 0.21 and 0.29; and (b) optimum-magnitude, minimum-phase filter, 
N = 9, 1.1 dB passband ripple, 45dB notch, passband edges 0.21 and 0.29. 
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FIGURE 4.5. (Continued) 

than 300).4 For example, a length-325, minimum-phase, low-pass filter was 
designed with the resulting responses shown in Fig. 4.5. Figure 4 . 5 ~  gives the 
magnitude response with about 82-dB attenuation in the stop band, and Fig. 
4.5b shows the impulse response. Note that it is far from having the symmetry 
required for linear phase. The maximum of the impulse response occurs at 
sample 9, corresponding to the low-frequency group delay shown in Fig. 4 .5~ .  

The same procedure described for obtaining an equiripple minimum-phase 
filter may be used to obtain a minimum-phase, Butterworth-type filter. The 
squared magnitude characteristic of the minimum-phase filter will have the 
maximally flat properties that the magnitude has for the linear-phase case. The 
group delay characteristic of the Butterworth minimum-phase filters is smoo- 
ther than that obtained for the equiripple minimum-phase filters. 

Summary 

Optimum-magnitude, minimum-phase filters must have an equiripple mag- 
nitude characteristic, as shown by the minimum-phase alternation theorem. 
Optimum-magnitude, minimum-phase filters can be designed by factoring an 
appropriately scaled linear-phase prototype. Minimum-phase filters generally 
have smaller group delays than linear-phase filters, except for the narrow pass- 
band filters that are both linear phase and minimum phase at the same time. 
Minimum-phase filters generally achieve the same magnitude specifications as 
the linear-phase filters but with fewer coefficients. The computational saving 
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may not be as great as it at first appears, since the linear-phase impulse response 
has a symmetry that allows storage of only (N + 1)/2 coefficients. The possibility 
of computational saving must be carefully examined for each particular 
implementation. 

4.2 COMPLEX APPROXIMATION 

Linear-phase and minimum-phase designs give a real approximation problem. 
A real-valued function of frequency f is approximated as a weighted com- 
bination of real-valued functions with real coefficients. To design filters with 
about the same magnitude characteristics but less delay than the linear-phase 
filters, we may use a complex desired function with a desired magnitude of unity 
and a desired group delay slightly less than that of the linear-phase filter with the 
same length. 

When the Chebyshev error is used, the resulting approximation problem 
cannot be directly solved with any linear approximation scheme for real-valued 
functions. Steiglitz5 has proposed a method for reformulating the complex 
approximation problem to allow the approximate minimization of the mag- 
nitude and phase of the error for all-pass filters. He uses linear programming for 
the design. This section describes a slightly different but closely related 
approach6*' that uses standard linear programming algorithms. A FORTRAN 
program for complex Chebyshev design is provided in the appendix (Program 
7). 

Least squared approximation may be used with complex-valued desired 
functions in exactly the same way as with the real-valued desired functions that 
arise in the linear-phase problem (see Section 3.2). This section describes 
complex LS approximation and contains an example designed with the LS 
complex design program in the appendix (Program 8). 

4.2.1 Complex Chebyshev Error Approximation 

The frequency response for a length-N FIR filter is 

where the unit-pulse response values h, are assumed to be real. In the complex 
approximation problem the desired frequency response D(f) is a complex- 
valued function of the frequency f. This leads to the 

Chebyshev Complex Approximation Problem 
Given 

A compact subset B of [0, 0.51 



4.2 Complex Approximation 121 

A desired complex-valued function DCf) 
A positive weight function WCf) 

the problem is to minimize over h, 

or to minimize over h, 

where ECf) is the complex-valued error function. 
The main difference between this problem and the linear-phase approxi- 

mation problem in Section 3.3 is that the magnitude of a complex error is to be 
minimized, as illustrated in Fig. 4.6, where the desired function D ( f )  is 1.0 in the 
pass band and 0.0 in the stop band. 

4.2.1.1. L inear Equation Approach 
The complex approximation problem may be viewed as a nonlinear real 
approximation problem, since the minimization of the magnitude of a complex 
number z corresponds to the minimization of the square root of the sum of the 
squares of the real and imaginary parts of z; with 

z = x + jy ,  lzl = ,/-. (4.15) 

The set of all points in the complex plane that have unit magnitude is a circle. 

& 99%. 

i:.:::: :::<:. 
X 

Im I 
FIGURE 4.6. The complex approximation problem. 
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The circle implied by (4.16) may be approximated with a unit square corre- 
sponding to the equation 

The original statement of the complex approximation problem required fitting 
the approximating function HCf) inside the smallest, circular cross section 
cylinder centered on the desired function D(f), as illustrated in Fig. 4.6. If a 
cylinder with a square cross section is used, the approximation problem in (4.14) 
changes, for W( f )  = 1, to minimize over h, 

If the imaginary part of ECf) is rewritten as 

equation (4.18) can be rewritten as 

minimize over h, 
max {lRe(E(f ))I, wwECf)e - '"'2)1}. (4.20) 
f  €9 

From this point of view the approximations of real and imaginary parts are 
special applications of the real rotation the~rem.~ . '  

Real Rotation Theorem 
For a complex number z = x + jy, 

I z I  = ,,/- = max {~e(zej~"")}. 
-0.5GuGO.5 

The approximations of the real and imaginary parts correspond to choosing 
only the two values of u = 0.0 and u = -0.25 in the real rotation theorem, as 
shown in Fig. 4.7. Streit and Nuttall7 have used more samples of u in the real 
rotation theorem to design array shading functions and have shown that 8 to 16 
samples of u are sufficient for their application. Equation (4.20), when viewed as 
an application of the real rotation theorem, becomes 

minimize over h, 
max max {~~e(E(f)e-j~"")I}, (4.2 1) 
f € . F  U E ' Y L  

where the set 



4.2 Complex Approximation 123 

FIGURE 4.7. Approximation of real and imaginary parts. 

When E ( f )  is written out in terms of D( f )  and H ( f ) ,  (4.21) becomes 

minimize over h, 

rnax max (lRe{(D( f )  - "fl h,,e - )  (4.23) 
(€3 u t J / /  n = 0 

The approximation problem in (4.23) may be solved with a standard linear 
programming package for solving overdetermined linear equations,' or the 
improved Algorithm 635.' If there are L frequency values in the set F and two 
values in the set a, as in (4.22), then there will be 2L equations in N unknowns, 
as shown in Fig. 4.7. These 2L equations correspond to using a square to 
approximate the circle as described in (4.17) and illustrated in Fig. 4.7. There are 
complex errors that may have a magnitude as large as 1.414 times the error 
minimized when the square is used to approximate the circle. As shown in Fig. 
4.8, when an octagon is used to approximate the circle, the complex error 
magnitude is only, at worst, 1.082 times the error minimized when the circle is 
used. The octagonal approximation corresponds to using 

in (4.21) and results in the 4L  equations shown in Fig. 4.8. 

4.2.7.2 Bandpass Design Using Complex Approximation 
To illustrate the possible advantages of complex approximation, we present two 
bandpass designs. Program 7 in the appendix was used to design these examples. 



124 Minimum-Phase and Complex Approximation 

4 L equations. N unknowns 

FIGURE 4.8. Octagonal approximation to circle. 

Example 4.2. Bandpass, Reduced Delay ~ i l t e r"  
The filter specifications are 

Filter length N = 3 1 
Stop-band frequencies: band 1: [O.OO, 0.101; weight = 10.0 
Pass-band frequencies: band 2: C0.15, 0.281; weight = 1.0 
Stop-band frequencies: band 3: C0.33, 0.501; weight = 10.0 

The desired function D ( f )  was 

- j 2 n 1 2 ~  for f in the pass band, 
for f in the stop bands. 

This choice of D ( f )  corresponds to a desired group delay of 12 samples. For 
comparison, note that a linear-phase filter with the same length has a group 
delay of 15 samples. The design used a 16-sided figure to approximate the circle 
and took about 20 minutes of CPU time on a VAX 750, using program 7 with 
the standard linear programming package in reference 8. The resulting unit- 
pulse response is shown in Fig. 4.9. The resulting frequency response is plotted in 
Fig. 4.10. The pass-band deviation is 6 ,  = 0.075, and the stop-band deviation is 
6 ,  = 0.0075. The pass-band group delay is between 11.08 and 13.19 samples. A 
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FIGURE 4.9. Unit pulse response of bandpass filter. 

linear-phase filter with the same length and the same band-edge frequencies has 
6 ,  = 0.11 and 6 ,  = 0.01 1. Thus, the complex approximation has a magnitude 
characteristic about 3 dB better and a group delay about three samples less than 
the linear-phase filter. Of course, the group delay is no longer a constant, as 
shown in Fig. 4.10. 

It is possible to derive an approximate expression for the group delay errori0 

This linear expression allows additional equations to be added to the linear 
programming problem and to directly weight the group delay of the filter. It is 
also possible to weight the phase rather than the group delay.'' The following 
example shows that with the use of delay weighting it is possible to get an 
approximately constant group delay characteristic. 

Example 4.3. Bandpass, Complex Appro.uimation with Delax Weightiug 
The filter specifications are 

Filter length N = 31 
Stop-band frequencies: band 1: CO.00, 0.101; weight = 10.0 
Pass-band frequencies: band 2: C0.15, 0.281; weight = 1.0 
Stop-band frequencies: band 3: C0.33, 0.501; weight = 10.0 
The weight on the group delay was 1.0 
The desired function DCf) was 

for f in the pass band, 
for f in the stop bands. 
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Bandpass. N = 31 To = 12 
10 I I I I 

FIGURE 4.1 0. Bandpass complex approximation. 

These specifications were used in Example 4.2, but here there is an additional 
weighting on the group delay from (4.25). 

The resulting pass-band and stop-band errors were 0.11 and 0.01 1, which are 
the same as those obtained with a linear-phase filter. The group delay in the pass 
band was between 11.90 and 12.13, as shown in Fig. 4.11. This filter has about 
the same magnitude as the linear-phase filter, but the approximately constant 
group delay is only 12 instead of 15. The unit pulse-response of the filter is 
shown in Figure 4.12. 

4.2.1.3 Equalizer Design Using Complex Approximation 
When an FIR filter is used to equalize or compensate an existing system or filter, 
the problem is usually a complex approximation problem. A system with good 
magnitude characteristics but bad group delay characteristics may be followed 
by a FIR equalizer that will add a group delay characteristic that can make the 
overall equalized delay close to the desired characteristic. The possibilities are 
illustrated by an equalized fourth-order elliptic filter in Example 4.4. 
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Bandpass. N = 31 TD = 12 
with weighting on group delay 

10 I I I I 

0 0.5 

FIGURE 4.11 .  Bandpass complex approximation with delay weight. 

FIGURE 4.12 .  Unit pulse response for delay weighting. 
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Example 4.4. Equalization of a Fourth-Order Elliptic Filter 
The fourth-order elliptic filter shown in Fig. 4.13 has a pass-band edge of 

f, = 0.25 and a stop-band edge off ,  = 0.3 with a pass-band deviation of 0.5 dB 
and a stop-band attenuation of at least 34 dB. This filter is minimum phase with 
a group delay that varies by about 11 samples inthe pass band. As shown in Fig. 
4.14, the group delay increases rapidly near the band edge. 

A length-31 FIR equalizer was designed with the complex approximation 
algorithm to obtain an equalized delay of 12.9 samples with a delay error of only 
0.65 samples in the pass band. In addition to equalizing the delay, the FIR 
equalizer also provides additional attenuation in the stop band of 15.6 dB, since 
the pass-band and stop-band deviations of the equalizer are 0.16. The equalizer 
magnitude is shown in Fig. 4.1 5. The group delay of the elliptic filter before and 
after equalization is shown along with the group delay of the equalizer in Fig. 
4.16. 

FIGURE 4.14. Group delay of elliptic filter. 
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FIGURE 4.1 5. Equalizer magnitude. 

1 (Equalized Delay 4 

FIGURE 4.16. Original and equalized delay together with the equalizer delay. 

4.2.2 Complex Approximation wi th  Least Squared Error 

The LS approximation theory described in Section 3.2.1 for linear-phase filter 
design can also be used for design of filters with arbitrary-phase characteristics. 

The frequency response for a length-N FIR filter is 

where we assume that the unit-pulse response values h, are real. In the complex 
approximation problem the desired frequency response DCf) is a complex- 
valued function of the frequency f :  As in Section 3.2.1, the error is minimized 
over a set of L discrete frequencies f,. 
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Least Squared Complex Approximation Problem 
Given 

A set of discrete frequencies j; contained in [-0.5, 0.51 
A desired complex-valued function D ( , f k )  

A positive weight function W ( , J i )  

the problem is to minimize, by choice of h,,, 

We can obtain LS solution to the overdetermined set of linear equations in 
(4.27) by using standard techniques." Program 8 solves the LS prob!sm by 
using a subroutine from LINPACK.ll This program was used to design a 
bandpass filter with the same band edges, weights, and desired delay as Example 
4.2. 

Euumple 4.5. Btrntlptrs.~, Rerl~rc~etl Delrrj. Fil ter,  Letrst Sq~rtrred Error 
The filter specifications are 

Filter length N = 3 1 
Stop-band frequencies: band 1: [O.OO, O.lC,]; weight = 10.0 
Pass-band frequencies: band 2: C0.15, 0.281; weight = 1.0 
Stop-band frequencies: band 3: C0.33, 0.501; weight = 10.0 
The desired function D( , / ' )  was 

for ,/' in the pass band, 
for j' in the stop bands 

This choice of D ( ] ' )  corresponds to a desired group delay of 12 samples. For 
comparison, note that a linear-phase filter with the same length has a group 
delay of 15 samples. The resulting frequency response is plotted in Fig. 4.17. The 
use of transition bands has greatly reduced the error peaks at the band edges, as 
shown in the magnitude plot of Fig. 4.17. The group delay varied between 1 1.47 
samples and 13.19 samples, an error very similar to that obtained in Example 
4.2. The LS design took only about one tenth of the computing time taken by the 
Chebyshev design in Example 4.2. 

Summary 

By complex approximation theory we can design filters that have smaller group 
delays than linear-phase filters and less delay distortion than minimum-phase 
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FIGURE 4.17. Magnitude and delay for least-squared design. 

filters. Complex approximation techniques can also be used to equalize 
magnitude and phase characteristics of a given system. The complex approxi- 
mation problem can be solved by the Chebyshev or the LS error criterion. 

The Chebyshev approximation problem was changed into a problem of 
finding the approximate solution to an overdetermined set of linear equations. 
This problem was in turn solved by standard linear programming techniques. 

The LS approach is often appropriate when performance is measured in 
terms of signal energy. Complex LS designs are done with Program 8, which 
uses the same LINPACK subroutines used in Chapter 3 for linear-phase design. 
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Implementation of Finite 
Impulse-Response Filters 

This chapter contains three major sections. The first section discusses represen- 
tation of continuous-amplitude signal samples in terms of discrete-amplitude or 
digital samples. The next section describes various ways of implementing an FIR 
digital filter. These implementations are given in terms of difference equations, 
block diagrams (structures), and assembly language programs. The final section 
treats the finite word-length effects of coefficient quantization and quantization 
noise. 

When a filter is implemented with a digital computer or digital hardware, the 
signal and coefficient values can no longer be represented with arbitrary 
precision and unlimited amplitude. Numbers must be represented as members of 
a finite set of values in a digital processor. There are several schemes for 
approximately representing real numbers digitally. but principally floating- 
point and fixed-point representations are used. The minimum computing time, 
or the most powerful filter that can be computed in a given time, is usually best 
obtained by fixed-point arithmetic. Furthermore, most signal-processing chips 
use fixed-point arithmetic to efficiently use the limited silicon area available. 
This book analyzes fixed-point implementations of digital filters. More complete 
treatment of finite word-length effects can be found in the recently published 
texts 1 and 2 and in reference 3. The presentations in this chapter and in Chapter 
8 have been motivated by the work of H. W. Schiissler and by reference 4. 

Finite word-length effects may be divided into two different 

1. Errors in representing coefficients as finite fixed-point numbers. (The 
actual filter does not have exactly the correct coefficients but is still linear.) 

2. Errors due to the finite-precision arithmetic operations of addition, 
multiplication, and storage. (These errors make the digital filter a 
nonlinear system.) 
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These two types of finite word-length errors require very different analysis 
techniques. For the error in 1, linear analysis can be used; but for the errors in 2, 
nonlinear analysis methods must be used. 

The discussion of quantization errors begins with an analysis of the 
conversion of an analog voltage with continuous-amplitude values to a digital 
representation with discrete values. The discussion on digital filter structures 
relates equations for computing the filter output to  structures and programs for 
implementing the filter on a programmable signal processor. Nonrecursive 
filters do not generally have severe quantization problems; therefore, the 
discussion of nonrecursive implementations in this chapter is brief. Recursive 
filters, however, have problems with coefficient sensitivity, quantization noise, 
and quantization-induced instabilities. Chapter 8 treats these possible problems 
with emphasis on second-order blocks. 

5.1 DIGITAL SIGNAL REPRESENTATIONS 

Digital filtering requires that signals be both discrete time and discrete 
amplitude. The conversion from continuous time to discrete time is called 
sampling. The discrete-time signal produced by sampling is then converted to a 
discrete-amplitude signal by a process called anulog-to-digital (AID) conversion. 
Analog-to-digital conversion, as described here, has nothing to do with the time 
variable. A sample value, a real number that may take on a nondenumerably 
infinite number of values, is approximated by or "converted to" a digital number 
that can only take on one of a finite set of values. 

5.1 .I. Two's Complement Arithmetic 

In the basic binary number representation of the integer x, 

the bits b,, m = 0,. . . , B - 1, are either 1 or 0-hence the name binary. The bits 
are written b , ,  . . . bo, where the leftmost bit b , ,  is called the highest-order bit 
or the most signijicant bit. 

To map the infinite range of values of the real number x into a finite range, we 
evaluate the value of x modulo 2'. Two's complement arithmetic is really 
arithmetic modulo 2'. Any number outside of the range of 1 , .  . . ,2'-' is reduced 
to this range by subtracting an appropriate integer multiple of 2'. Intermediate 
results in a computation may overflow, and the correct output will still be 
obtained, provided that the output is within the range of 1 , .  . . , 2'-'. 

Negative numbers are represented as the additive inverses of the positive 
numbers. For example, when 1 is added to 2' - 1, the result is 2', which is 
equivalent to zero modulo 2'. Thus, 2' - 1 is identified as " - 1." In B-bit two's 
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complement arithmetic, the numbers up to and including 2B-1 - 1 represent 
positive n~mber s . ' . ~  They all have a highest-order bit of 0. The next number, 
2 ~ ~ 1  , is the most negative number in the two's complement system. The 

numbers from 2B-1 up to and including 2' - 1 all have a highest-order bit of 1 
and represent negative numbers. The circle of 3-bit two's complement numbers 
in Fig. 5.la shows modulo-8 arithmetic. The integer representations for the 
binary numbers are shown on the inside of the circle. 

Figure 5.la shows that as x increases, the representation wraps around the 
circle. Information is lost about the number of times that x has wrapped around 
the circle. Only the 3-bit residue of x modulo 8, the relative position on the circle, 
is available. 

5.1.2. Fractions 

For easy truncation or rounding, the usual way to describe and use fixed-point 
arithmetic is with fractions. If the largest 3-bit positive number is thought of as 3, 
and the most negative number as $ = - 1.000, then the product of any two 
numbers is a number whose magnitude is less than or equal to 1. The highest- 
order bit is called the sign bit. A real-valued voltage o, between - V and + V 
volts, is represented in two's complement arithmetic by B bits with a fractional 
part 

000 

111 0 00 1 

- 1 1 

Negative numbers 11 0 - 2 2 01 0 Positive numbers 

- 3 3 

101 - 4  01 1 

100 
( a )  

000 

111 0 001 

-0.25 0.25 

Negative numbers 11 0 -0.5 0.5 01 0 Positive numbers 

-0.75 0.75 

101 -1.0 01 1 

100 

(b )  

FIGURE 5.1. Circles of 3-bit two's complement numbers. (a) Integers and (b )  fractions. 
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as the quantized value 

where each of the B bits, b,, n = 0,.  . . , B - 1, is either 1 or 0. Figure 5.1b shows 
the fractional representations for 3-bit numbers. For example, the bit pattern 
101 in Fig. 5.lb with bo = 1, b, = 0, and b, = 1 represents the number 

5.1.3 Quantization Error 

The approximate representation of the real number v  in (5.3), [v ] , ,  must be one 
of the 28-possible values of the fraction in (5.3). The separation between adjacent 
quantized values, known as the quantization step size, is 

There is a nonlinear relation between v  and [ v l Q  that depends on whether the 
approximation to v  is made by truncation or rounding. The relation between the 
voltage v  and its quantized approximation is shown in Fig. 5.2 for a 3-bit 

( b )  
FIGURE 5.2. Quantization with three bits. (a) Truncation and (b) rounding. 
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representation with V = 1, that uses both truncation ( 5 . 2 ~ )  and rounding (5.2b). 
The maximum value of [ v l Q  is 1 - Q = 0.75, and the minimum value is - 1.0. 

The periodic nature of the two's complement type of overflow behavior is 
also illustrated in these figures. After the voltage v exceeds +0.75 V ,  it is 
represented as - 1 V (see Fig. 5 . 2 ~ ) .  The periodicity shown in Fig. 5.2 
corresponds to the wraparound described in connection with Fig. 5.1. 

Quantization of a signal is a memoryless nonlinear operation. The input to 
the memoryless nonlinear system, shown in Fig. 5.3, is the signal voltage v, and 
the output is the quantized signal [ v lQ .  Although the quantization process is 
deterministic, the difference between v and [ v l Q  is usually modeled as a random 
variable 

n = [ v l Q  - v. (5.5) 

The quantized signal is considered to be the true signal v with an added noise 
component n, as shown in Fig. 5.3b. This quantization noise can be modeled as a 
uniformly distributed random variable that is independent of the signal v when 
the number of bits is reasonably large, the error is relatively small, and the signal 
is changing rapidly enough from sample to  ample.^,^ 

For truncation, the quantization error n lies between 0 and Q and is modeled 
as a uniformly distributed random variable with a mean value of Q/2. For 
rounding, the quantization error or noise is modeled as a uniformly distributed 
random variable with zero mean. The assumed probability densities for 
truncation and rounding are shown in Fig. 5.4. 

The variance of the random variable n is given by 

where E { x )  is the expected value of x .  For rounding, the noise has zero mean, 
E { n )  = 0, and the variance 

(5.7) 

FIGURE 5.3. Modeling quantization noise. (a) Nonlinear; (6 )  linear model. 

u : 

( a )  

Quantizer > [uIQ 
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FIGURE 5.4. Probability densities (a) Truncation and (b) rounding 

Using the probability density p(u), shown in Fig. 5.4b, gives 

The variance for truncation is also ~ '112 .  
The errors that are made in converting a continuous-amplitude signal into a 

discrete representation may be evaluated in terms of a signal-to-noise ratio 
(SNR). The signal must be scaled to limit the possibility of overflow with the use 
of a scale factor or gain factor G ,  as shown in Fig. 5.5. A small value of G will 
ensure that overflow never occurs, but the SNR will be reduced because the 
quantization noise level is fixed and a small value of G reduces the signal 
component. If occasional overflow is allowed, then the signal component will be 
larger and thus the SNR will be increased. This tradeoff between overflow and 
quantization noise is always necessary when using fixed-point arithmetic. 

With V = 1 in (5.3) the quantization step size, from (5.4), is 

The noise variance is 

FIGURE 5.5. Signal scaling. 
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The SNR is defined as 

SNR = 10 log [E{(T2}]. 

Using the values in (5.10), we obtain 

SNR = 10 log[E{(Gv)')] - 10 log (5.12) 

= 10 log[E{(G~)'}] + 20B log 2 + 4.77. (5.13) 

The SNR clearly depends on the signal statistics. A reasonable assumption, 
based on the central limit theorem (CLT), is that the signal is a Gaussian 
random variable5 with mean zero and variance a'. If G is chosen to be 

overload will only occur 64 times in a million samples according to the Gaussian 
probability law. In other words, the probability that a Gaussian random 
variable falls within the 40 range5 is 0.999936. Substituting (5.14) in (5.13) gives 

SNR = 10 log[&] + 6.02B + 4.77, (5.15) 

which is approximately 

SNR 2 6B - 7.3 dB. (5.16) 

The exact value of SNR depends on the choice of G. A larger value of G would 
give a larger value for SNR but would increase the probability of overflow. 
Conversely, if G were reduced to a value smaller than in (5.14), the probability of 
overflow would be reduced, but the SNR would also be reduced. If the signal 
samples were governed by a different probability law, slightly different results 
would be obtained. A good rule of thumb is to assume the SNR to be about 6 
dB/bit. 

Summary 

This section introduced the concepts of two's complement arithmetic, fractional 
representation of numbers, and quantization noise. The tradeoff between scaling 
and quantization noise was discussed. The signal should be scaled to be as large 
as possible consistent with the allowed frequency of overflow. In this way all 
available quantization levels are used, and the ratio of signal to quantization 
noise is maximized. 
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5.2 EQUATIONS, STRUCTLIRES, AND PROGRAMS 

After an FIR filter has been designed by the techniques in Chapters 3 and 4, the 
approximation problem has been solved. The coefficients in the filter transfer 
function have been calculated to meet a given specification. The second part of 
digital filter design is the realization problem. The transfer function of the filter 
must be "realized" as a piece of digital hardware or as a program to implement 
the input/output relation implied by the filter transfer function. 

For a given transfer function there are many different ways to implement or 
program the digital filter. These various implementations are represented with 
block diagrams and are called j l ter  structures. This section describes two 
different structures for FIR digital filters and relates these structures to assembly 
language programs to implement the filter. 

Many different factors enter into the selection of a particular structure for a 
particular application. One structure may be preferred over the other because it 
is easier to program for a particular computer or signal-processing chip. The 
choice of structure may be made according to the regularity of the VLSI 
implementation. One structure may be less sensitive to errors in coefficients. A 
structure may be chosen to minimize noise introduced by quantization of the 
signal.' 

This section relates the filter transfer function, the equations for calculating 
the output from the input, block diagrams, and programs for a digital signal- 
processing chip. One of the simplest digital filters is the length-3 FIR filter with a 
transfer function 

The equation that provides the output is the convolution 

The structure indicated by the block diagram in Fig. 5.6 illustrates the direct 
calculation of (5.18) and is called the direct structure. 

The boxes labeled z- '  in Fig. 5.6 represent unit sample delays. The value 
x(n - 1 )  is a delayed version of x(n). If the filter were implemented with a tapped 
delay line, the z- '  would correspond to a physical delay element. However, 
when a digital computer program is written to implement (5.18), the boxes 

FlGU R E 5.6. Direct nonrecursive structure. 
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N E X T  IN X N , A D C  
L T  X N 2  
M P Y  H 2  
P A C  
LT. XN1 
DMOV X N 1  
M P Y  H 1  
APAC 
L T  X N  
DMOV X N  
M P Y  H O  
A P A C  
S A C H  YN, 1 
O U T  YN,DAC 
C A L L  W A I T  
B N E X T  

Read input x(n) from A I D  convertar 
Load temporary register w i t h  x(n-2) 
Multiply x(n-2) by h2 
Load h x(n-2) into accumulator 
Load tgmporary register w i t h  x(n-1) 
x(n-1) moved to location X N 2  
Multiply x(n-1) by h l  
h x(n-1) added to accumulator  dad temporary register w i t h  x( n) 
x(n) moved to location XN1 
Multiply x(n) by h o  
h x(n) added to accumulator 
Sfore contents of accumulator in YN 
Put out y(n) to D I A  convertlr 
Wait for next input 
G o  back and get next input 

FIGURE 5.7. Assembly code for direct structure. 

labeled z-' correspond to storage of variables rather than any delay. This is 
illustrated in Fig. 5.7, where assembly language instructions for the TMS32010 
signal-processing chip are shown. (See reference 6 for a detailed description of 
the instructions.) The program assumes that the present input x(n) = XN and 
the two most recent inputs x(n - 1) = XN 1 and x(n - 2) = XN2 are stored in 
memory. 

The blocks in Fig. 5.6 labeled z- '  correspond to the DMOV XN1 and 
DMOV XN instructions, which shift the data after it has been used. The code in 
Fig. 5.7 is presented to explain how to implement the direct structure. A shorter 
(and faster) program can be written by using a special instruction (LTD), which 
performs the operations of the three instructions APAC, LT, and DMOV. The 
LTD instruction is used in the design example at the end of this chapter. 

Another structure, called the transpose structure because the matrix form is 
the transpose of that in Fig. 5.7,' implements exactly the same input/output 
relation (5.18). A block diagram of the transpose structure is shown in Fig. 5.8. 
The structure in Fig. 5.8 leads to a very different program for computing the 
filter output. Assembly code corresponding to the transpose structure is shown 
for the TMS32010 in Fig. 5.9. The delay blocks in Fig. 5.8 correspond to the 
instructions SACH Z1 and SACH 22 in Fig. 5.9. The programs for the direct 
and transpose structures each have the same number of instructions and take 
the same amount of time to run. However, the direct structure can better take 

FIGURE 5.8. Transpose nonrecursive structure. 
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NEXT IN XN,ADC 
LT XN 
MPY HO 
LAC 21.15 
APAC 
SACH YN, I 
MPY HI 
LAC 22,15 
APAC 
SACH Zl,l 
MPY HZ 
PAC 
SACH 2 2.1 
OUT YN. DAC 
CALL WAIT 
B NEXT 

Read xtn) from AID converter 
Load temporary register with x(n) 
M u l t i p l ~  x(n) by h 
Load rl into high 8ccumulator 
(hox(n) + rl) now in the accumulator 
(h x(n) + r1) stored in YN 
Muytiply x(n) by h 
Load z2 into high accumulator 
(hlx(n) + r2) now in the accumulator 
( h  xtn) + 22) stored ~n 21 
~ u 1 t i p l y  x(n) by h 2  
h2x(n) now in the accumulator 
h x(n) stored in 22 
06tput to D/A converter 
Wait for next input 
Go back and get next input 

FIGURE 5.9. Assembly code for transpose structure. 

advantage of the special LTD instruction and has less quantization noise; it is 
thus preferred for FIR filtering. 

Summary 

The way that a digital filter computes its output can be described with difference 
equations, block diagrams describing a structure for a discrete-time system, or 
computer programs. This section related these three representations and 
described the direct and transpose nonrecursive structures for FIR filters. 

5.3 FINITE WORD-LENGTH EFFECTS IN 
FILTER lM PLEM ENTATION 

The direct and transpose structures described in Section 5.2 are nonrecursive 
implementations of an FIR filter. This section discusses the two categories of 
finite word-length effects in nonrecursive filters. First, the errors introduced by 
quantization of the filter coefficients are analyzed as the addition of an error 
system to the ideal system with unquantized coefficients. Scaling to avoid 
overflow is then discussed and related to the problem of maximizing the ratio of 
signal to quantization noise at the output of the filter. 

5.3.1 Coefficient Quantization 

The coefficients in the nonrecursive filter must be quantized to B, bits. Instead of 
implementing (5.18), the filter actually implements 

where [h(m)lQ represents quantized filter coefficients. 



5.3 Finite Word-Length Effects in Filter Implementation 143 

The frequency response with quantized coefficients E?(f) may be viewed as 
the sum of the ideal (unquantized) response and the frequency response of an 
error system He( f). 

The maximum value of the response of the error system is bounded by the 
inequality 

When the coefficients are rounded to B1 bits, 

The addition of the error system may limit the attenuation in the stop band, for 
example. In other words, the error system may allow additional signal 
transmission in the desired stop band. From (5.23) we find the maximum 
possible stop-band transmission, in dB, to be bounded by 

Since 20 1oglo(2) E 6, this bound simplifies to 

20 logl0N + 20 10g,,(2-~~) = 20 logl0N - 6B1 dB, (5.25) 

giving the bound 

20 log,,lH,(f)J < 20 logl0N - 6Bl dB, (5.26) 

where Bl is the number of bits used to represent the filter coefficients in the 
length-N filter. For example, with 16-bit coefficients in a length-100 filter 
(N = 100, B, = 16), (5.26) shows that He( f )  may be as large as - 56 dB. 

The bound in (5.26) is very conservative, and in most cases one can get by 
with fewer bits if an optimization procedure is used to pick the best quantized 
coefficients rather than simply rounding the coefficients determined from a 
program that assumes no coefficient Generally, with 16-bit coefficients 
and short filters, the rounded coefficients will be adequate. However, when very 
few bits are used for filter coefficients, then we can obtain significant improve- 
ment over the rounded values by using an optimization program.' 
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5.3.2 Scaling and Overflow 

The direct implementation of a length-3 nonrecursive filter is shown in Fig. 5.10. 
This figure has the same structure as Fig. 5.6; however, it has been redrawn to 
emphasize the single output accumulator. The output of the filter at time n is 
given by 

y(n) = C h(m)x(n - m). 
m = O  

When the input x(n) and the unit-pulse response h(n) have magnitudes less than 
or equal to unity, the magnitude of y(n) in (5.27) is bounded by 

For an input with magnitude at most unity, the largest possible value of the 
output at time n occurs when 

In the worst case 

This equation is known as the 1 ,  norm of h: 

If the unit-pulse response samples are all divided by the scale factor 

FIGURE 5.10. Direct implementation of a nonrecursive filter. 
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to give the scaled unit-pulse response 

Then the maximum output magnitude of the scaled filter will be less than or 
equal to unity, and overflow will be completely avoided. 

This worst-case bound is slightly conservative for two reasons. First, since the 
largest positive signal value is 1 - Q, where Q is the quantization step size, (5.30) 
cannot quite be attained unless all of the filter coefficients are negative. Second, 
it is very unlikely that the worst-case signal, (5.29),  will ever occur in practice. 

We can calculate the gain factor by using one of the following two additional 
measures of the size of h(n) to give a less-conservative scaling rule. Both of these 
measures of gain are based on norms of the unit-pulse response h. 

The 1, norm of h, 

is always less than or equal to the 1,  norm of h. The Chebyshev norm of the 
frequency response H( f ), 

is also always less than the I ,  norm of h. 
If G = Ilhlll, then the signal at the output of Fig. 5.10 is guaranteed not to 

overflow. Since the 1, norm of h is less than or equal to the 1,  norm of h when 
G = 1 1  h 1 1  is used, larger unit-pulse response values result and the output SNR is 
improved. This improved SNR comes at the expense of the possibility of 
overflow. The choice of gain G = llHllc only guarantees that the steady-state 
response of the system to a sine wave will not overflow. Transient signals may 
occasionally cause overflows. However, the frequency-domain scaling measure 
is easier to interpret than the other two norms and is often the preferred method 
for calculating scaling factors." The scaling procedure is described in detail in 
the design example for a length-21 filter implemented with the direct structure. 

5.3.3 Quantization Noise 

In Fig. 5.10 it is good practice to accumulate the sum in double precision, 
reducing to the original word length only for additional processing or storage of 
the output y(n). If a double-precision accumulation is not performed, quantiza- 
tion errors will be introduced when the low-order bits are discarded. The 
quantized signal yQ(n) is an approximation to y(n) without signal quantization. 
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FIGURE 5.11. Direct implementation of a nonrecursive filter with quantization noise. 

In Fig. 5.1 1 the quantization error or noise 

is shown added to the correct output y(n). If single precision were used, there 
would be two sources of quantization noise. 

This quantization noise can be modeled as uniformly distributed, independ- 
ent random variables that are independent of the signal y(n) when the number of 
bits is reasonably large, the error is relatively small, and the signal is changing 
rapidly enough from sample to ~amp1e.l .~ This error can be analyzed in the same 
way as the error in Section 5.1.3. It is easy to understand the effect of the 
quantization error in Fig. 5.1 1, because it occurs at the output of the filter and is 
represented as an external white-noise source with variance 

However, when the filter is implemented in the transpose structure of Fig. 5.8, 
quantization noise is introduced inside the filter with the variable z,. For the 
transpose structure there are two sources of quantization noise, as shown in Fig. 
5.12. Because of the extra source of quantization noise in the transpose structure, 
the direct form is recommended for nonrecursive filters. 

There are many other structures for FIR filters. For example, the transfer 
function can be factored, and the resulting shorter filter sections can be 

x(n) 
h2 hl ho 

\ I  \ /  
I 

? 

. / 

hsx(n -1) + hlx(n) 

FIGURE 5.1 2. Quantization noise in the transpose structure. 
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c a ~ c a d e d . ~  When the filter coefficients have certain symmetries, as do linear- 
phase filters, special structures may be appropriate. However, for the TMS320 
signal-processing chip and for most signal processors with single-cycle multiply 
capability and adequate word lengths, the direct structure is usually the best 
choice. 

Summary 

Coefficient quantization was analyzed in terms of an error system added to the 
ideal system without coefficient quantization. It was shown that the magnitude 
of the frequency response of the error system has an upper bound that increases 
with increases in filter length and decreases when more bits are used to represent 
the filter coefficients. 

Scaling strategies based on the I, norm of the unit-pulse response (most 
conservative), the I, norm of the unit-pulse response, and the Chebyshev norm 
of the frequency response were described for reducing or eliminating overflow. 

Quantization noise in the output of an FIR direct structure or a transpose 
structure can be analyzed in the same way as quantization noise is analyzed in 
Section 5.1. 

5.4 DESIGN EXAMPLE 

This design example presents the step-by-step procedure for designing a length- 
21 low-pass filter. First, one enters the specifications into the design program 
(Program 6) provided in the appendix. After the coefficients are calculated, 
scaling is performed to prevent overflow. Finally, one writes the TMS32010 
assembly language program to implement the filter, using the direct structure 
shown in Fig. 5.6. 

STEP 1. The first step in the design is to decide on the filter specifications. For 
this example the specifications are those of Example 3.14, the length-21 low-pass 
filter. The specifications and the output of Program 6 are repeated here in Fig. 
5.13 for convenience. 

STEP 2. The next step is to decide on the structure to be used in implementing the 
filter as described in Section 5.2.1. In this example the direct structure shown in 
Fig. 5.6 was chosen because it is especially easy to implement with the special 
multiply/accumulate instructions on the TMS32010. For this short filter there 
should be little problem with quantization effects if 16-bit coefficients are used 
and 32 bits are used to accumulate the output sum. 

STEP 3. Next we must scale the unit-pulse response coefficients to limit overflow 
(see Section 5.3.2). Here a tradeoff must be made. If we scale the filter coefficients 
small enough so that overflow will never happen, the output signal to 
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............................................................ 
f i n i t e  i m p u l s e  r e s p o n s e  ( f i r )  

l i n e a r  p h a s e  d i g i t a l  f i l t e r  d e s i g n  
r e m e s  e x c h a n g e  a l g o r i t h m  

b a n d p a s s  f i l t e r  

f i l t e r  l e n g t h  = 2 1  

l o w e r  b a n d  edge 
u p p e r  b a n d  e d g e  
desired v a l u e  
w e i g h t i n g  
d e v i a t i o n  
d e v i a t i o n  i n  db 

i m p u l s e  r e s p o n s e  * * * * *  
0 . 1 8 2 5 5 4 3 9 e - 0 1  = h (  2 1 )  
0 . 5 5 1 3 6 7 5 5 e - 0 1  = h (  2 0 )  

- 0 . 4 0 9 1 0 7 2 8 e - 0 1  = h (  1 9 )  
0 . 1 4 9 3 0 8 5 5 e - 0 1  = h (  1 8 )  
0 . 2 7 5 6 8 5 8 4 e - 0 1  = h (  1 7 )  

- 0 . 5 9 4 0 7 7 9 7 e - 0 1  = h (  1 6 )  
0 . 4 4 8 4 1 8 4 1 e - 0 1  = h (  1.5) 
0 . 3 1 9 0 2 6 6 0 e - 0 1  = h (  1 4 )  

-0 .14972545e+OO = h (  1 3 )  
0 . 2 5 6 8 7 2 3 9 e + 0 0  = h (  1 2 )  
0 .69994062e+OO = h (  1 1 )  

b a n d  1 b a n d  2  
0 .  0 . 3 7 0 0 0 0 0  
0 . 3 3 0 0 0 0 0  0 . 5 0 0 0 0 0 0  
1 . 0 0 0 0 0 0 0  0 .  
1 . 0 0 0 0 0 0 0  1 . 0 0 0 0 0 0 0  
0 . 0 9 8 8 6 9 7  0 . 0 9 8 8 6 9 7  
0 . 8 1 8 9 2 3 8  - 2 0 . 0 9 8 7 3 2 0  

FIGURE 5.13. Specifications for FIR design example (Example 3.14). 

I, Scaled Coefficients 

Decimal Hex 
0.008697 = 011 D 
0.026267 = 035D 

-0.019490 = FD82 
0.0071 13 = 00E9 
0.013134 = 01AE 

-0.028302 = FC62 
0.021363 = 02BC 
0.01 51 99 = 01 F2 

-0.071330 = F6DF 
0.122376 = OFAA 
0.333457 = 2AAF 

FIGURE 5.14. Scaled coefficients for design example. 

quantization noise ratio will be smaller than if another scaling strategy, which 
allows occasional overflow, is used. The 1, and the I ,  norms were calculated for 
this example. 

1, norm = 2.09905, 1, norm = 0.831802. 

Since we expected little trouble from quantization noise, we used the most 
conservative scaling strategy to guarantee that overflow would never occur. All 
coefficients were divided by the I ,  norm to give the scaled unit-pulse response 
listed in Fig. 5.14. To ensure that the frequency response is still acceptable with 
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the quantized coefficients, one should plot it and compare it with the response 
from unquantized coefficients. 

STEP 4. Finally, we write an assembly language program for the direct, 
nonrecursive implementation of the filter, following the program shown in Fig. 
5.9. A complete assembly language program for the TMS32010 are in the 
appendix (Program 11). 
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In f in i te  Impu lse  Response 
( I  I R) Filters 





Properties of Infinite 
Impulse- Response Filters 

Digital filters with an infinite-duration impulse response (IIR) have character- 
istics that make them useful in many applications. This chapter develops and 
discusses the properties and characteristics of these filters. 

Because of the feedback necessary in an implementation, the infinite impulse 
response (IIR) filter is also called a recursive filter or, sometimes, an autore- 
gressive moving-average filter (ARMA). In contrast to'the FIR filter with a 
polynomial transfer function, the IIR filter has a rational transfer function. The 
transfer function being a ratio of polynomials means it has finite poles as well as 
zeros, and the frequency-domain design problem becomes a rational function 
approximation problem in contrast to the polynomial approximation for the 
FIR filter. This gives considerably more flexibility and power, but brings with it 
certain problems in both design and implementation.'-4 

The defining relationship between the input and output variables for the IIR 
filter is given by 

The second summation in (6.1) is exactly the same moving average of the present 
plus past M values of the input that occurs in the definition of the FIR filter in 
(2.1). The difference arises from the first summation, which is a weighted sum of 
the previous N output values. This is the feedback or recursive part that causes 
the response to an impulse input theoretically to endure forever. The calculation 
of each output term y(n) from (6.1) requires N + M + 1 multiplications and 
N + M additions. Other algorithms or structures for calculating y(n) may 
require more or less arithmetic. They are discussed in Chapter 8. 

Just as in the case of the FIR filter, the output of an IIR filter can also be 
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calculated by convolution. 

- 
y(n) = h(k)x(n - k). 

k = O  
(6.2) 

In this case the duration of the impulse response h(n) is infinite, and, therefore, 
the number of terms in (6.2) is infinite. The N + M + 1 operations required in 
(6.1) are clearly preferable to the infinite number required by (6.2). This gives a 
hint as to why the IIR filter is very efficient. The details will become clear as the 
characteristics of the IIR filter are developed in this chapter. 

6.1 FREQUENCY-DOMAIN FORMULATION 
OF IIR FILTERS 

The transfer function of a filter is defined as the ratio Y(z) /X(z) ,  where Y(z)  and 
X(z)  are the z transforms of the output y(n) and input x(n), respectively. It is also 
the z transform of the impulse response. Using the definition of the z transform 
in (2.4), we obtain the transfer function of the IIR filter defined in (6.1): 

This transfer function is also the ratio of the z transforms of the a(n) and b(n) 
terms. 

The frequency response of the filter, as shown in Section 1.2, is found by setting 
z = ej", which gives (6.3) the form 

Recall that this form assumes a sampling rate of T = 1. To simplify notation, we 
use H(o) rather than H(ej") to denote the frequency response. 

This frequency-response function is complex valued and consists of a 
magnitude and a phase. Even though the impulse response is a function of the 
discrete variable n, the frequency response is a function of the continuous- 
frequency variable 01 and is periodic with period 2i7, as was shown for the FIR 
case in Section 2.1. 

Unlike the FIR filter case, exactly linear phase is impossible for the IIR filter. 
In (2.18) and (2.23) we showed that linear phase is equivalent to symmetry of the 
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impulse response. This equivalency is clearly impossible for the IIR filter with an 
impulse response that is zero for n < 0 and nonzero for n going to infinity. 

The FIR linear-phase filter allowed us to remove the phase from the design 
process. The resulting problem was a real-valued approximation problem 
requiring the solution of linear equations. The IIR filter design problem is more 
complicated. Linear phase is not possible, and the equations to be solved are 
generally nonlinear. The most common technique is to approximate the 
magnitude of the transfer function and let the phase take care of itself. If the 
phase is important, it becomes part of the approximation problem, which then is 
often difficult to solve. 

6.2 CALCULATION O F  IIR FILTER 
FREQUENCY RESPONSE 

As shown in Sections 2.2 and 2.2.2, L equally spaced samples of H ( o )  can be 
approximately calculated by taking an L-length DFT of h(n) given in (6.5). 
However, unlike for the FIR filter, this requires that the infinitely long impulse 
response be truncated to at  least length L. A more satisfactory alternative is to 
use the DFT  to evaluate the numerator and denominator of (6.4) separately 
rather than to approximately evaluate (6.3). We do  this by appending L - N 
zeros to the a(n) and L - M zeros to the b(n) from (6.1) and by taking length-L 
DFTs of both to give 

where the division is a termwise division of each of the L values of the DFTs as a 
function of k. This direct method of calculation is a straightforward and flexible 
technique that does not involve truncation of h(n) and the resulting error. Even 
nonuniform spacing of the frequency samples can be achieved by altering the 
DFT defined in (2.7) as was suggested for the FIR filter. Because IIR filters are 
generally lower in order than FIR filters, direct use of the DFT is usually 
efficient enough, and use of the FFT is not necessary. Since the a(n) and h(n) do 
not generally have the symmetries of the FIR h(n), the DFTs cannot be made 
real; therefore, the shifting and stretching techniques of Section 2.2.2 are not 
applicable. 

An example of the frequency-response plot of a third-order elliptic function 
low-pass filter with transfer function 
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impulse response. This equivalency is clearly impossible for the IIR filter with an 
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process. The resulting problem was a real-valued approximation problem 
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DFT defined in (2.7) as was suggested for the FIR filter. Because IIR filters are 
generally lower in order than FIR filters, direct use of the DFT is usually 
efficient enough, and use of the FFT is not necessary. Since the a(n) and b(n) do 
not generally have the symmetries of the FIR h(n), the DFTs cannot be made 
real; therefore, the shifting and stretching techniques of Section 2.2.2 are not 
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An example of the frequency-response plot of a third-order elliptic function 
low-pass filter with transfer function 
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FIGURE 6.1. Magnitude frequency response of a third-order IIR filter. 

is given in Fig. 6.1. The details for designing this filter are discussed in Section 
7.2.8. A similar performance for the magnitude response would require a length 
of 18 for a linear-phase FIR filter. 

6.3 LOCATIONS OF POLES AND ZEROS 
FOR IIR FILTERS 

In Section 2.2.3 the possible locations of the zeros of the transfer function of 
an FIR linear-phase filter were analyzed. For the IIR filter there are poles as well 
as zeros. For most applications the coefficients a(n) and h(n) are real, and 
therefore the poles and zeros occur in complex-conjugate pairs, or they are real. 
A filter is stable if, for any bounded input, the output is bounded. This stability 
implies that the poles of the transfer function must be strictly inside the unit 
circle of the complex z plane. Indeed, the possibility of an unstable filter in IIR 
filter design is a serious problem that does not exist for FIR filters. An important 
characteristic of any design procedure is the guarantee of stable designs, and an 
important ability in the analysis of a given filter is the determination of stability. 
For a linear filter analysis, stability determination involves the zeros of the 
denominator polynomial of (6.4). The location of the zeros of the numerator, 
which are the zeros of H(z), are important to the performance of the filter, but 
they have no effect on stability. 
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I z plane 

FIGURE 6.2. Pole and zero locations for a third-order IIR filter. 

If all poles and zeros of a transfer function are inside or on the unit circle of 
the z plane, the filter is called minimum phase. The effects on the magnitude of the 
transfer function of a pole or a zero at a radius r from the origin of the z plane are 
exactly the same as a pole or zero at the same angle but at a radius of l lr .  
However, the effect on the phase characteristics is different. Because stable filters 
only are generally used in practice, all poles must be inside the unit circle. For a 
given magnitude response there are two possible locations for each zero not on 
the unit circle. The location that is inside gives the least phase shift-hence the 
name "minimum-phase" filter. The locations of the poles and zeros of the 
example in (6.7) are given in Fig. 6.2. 

Since evaluating the frequency response of a transfer function is the same as 
evaluating H(z) around the unit circle in the z plane, a comparison of the 
frequency-response plot in Fig. 6.1 and the pole-zero locations in Fig. 6.2 gives 
inkight into the effects of pole and zero locations on the frequency response. 
When it is desirable to reject certain bands of frequencies, zeros of the transfer 
function will be located on the unit circle at locations corresponding to those 
frequencies. This case is illustrated in the examples in Chapter 7 .  

By using both poles and zeros to describe an IIR filter, we can do much more 
than in the FIR filter case where only zeros exist. Indeed, an FIR filter is a 
special case of an IIR filter with a zero-order denominator. This generality and 
flexibility do not come without a price. The poles are more difficult to realize 
than the zeros, and the design is more complicated. 

Summary 

This chapter gave the basic definition of the IIR or recursive digital filter and 
compared it to a generalization of the FIR filter described in previous chapters. 
The feedback terms in the IIR filter cause the transfer function to be a rational 
function with poles as well as zeros. This feedback and the resulting poles of the 
transfer function give a more versatile filter: fewer stored coefficients and less 
arithmetic are required. Unfortunately, it also destroys the possibility of linear 
phase and introduces the possibility of instability and greater sensitivity to the 
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effects of quantization. The design methods, which are more complicated than 
for the FIR filter, are discussed in Chapter 7, and the implementation, which also 
is more complicated, is discussed in Chapter 8. 
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Design of Infinite 
Impulse- Response Filters 

The design of a digital filter is usually specified in terms of the characteristics of 
the signals to be passed through the filter. In many cases the signals are 
described in terms of their frequency content. For example, even though it 
cannot be predicted just what a person may say, it can be predicted that the 
speech will have frequency content between 300 and 4000 Hz. Therefore, a filter 
can be designed to pass speech without knowing what the speech is. This 
frequency-domain description is true of many signals and of many types of noise 
or interference. For these reasons, among others, specifications for filters are 
generally given in terms of the frequency response of the filter. 

The basic IIR filter design process is similar to that for the FIR problem: 

1. Choose a desired response, usually in the frequency domain. 
2. Choose an allowed class of filters-in this case, the Nth-order IIR filters. 
3. Establish a measure of distance between the desired response and the 

actual response of a member of the allowed class. 
4. Develop a method to find the best allowed filter as measured by being 

closest to the desired response. 

This chapter develops several practical methods for IIR filter design. A very 
important set of methods is based on converting Butterworth, Chebyshev I and 
11, and elliptic-function analog filter designs to digital filter designs by both the 
impulse-invariant method and the bilinear transformation. The characteristics 
of these four approximations are based on combinations of a Taylor series and a 
Chebyshev approximation in the pass band and stop band. Many results from 
this chapter can be used for both analog and digital filter design. 

Extensions of the frequency-sampling and LS error designs for the FIR filter 
are developed for the IIR filter. This chapter describes several direct iterative 
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numerical methods for optimal approximation. Prony's method and direct 
numerical methods are presented for designing IIR filters according to time- 
domain specifications. 

The discussion of the four classical low-pass filter design methods is arranged 
so that each method has a section on properties and a section on design 
procedures. There are also design programs in the appendix. An experienced 
person can simply use the design programs. A less-experienced designer should 
read the design procedure material, and someone who wants to understand the 
theory in order to modify the programs, develop new programs, or better 
understand the given ones should study the properties sections and consult the 
references. 

7.1 RATIONAL FUNCTION APPROXIMATION 

The mathematical problem inherent in the frequency-domain filter design 
problem is the approximation of a desired complex frequency-response function 
H,(z) by a rational transfer function H(z) with an Mth-degree numerator and an 
Nth-degree denominator for values of the complex variable z along the unit 
circle of z = ej". This approximation is achieved by minimizing an error 
measure between H,(w) and H(w). 

For the digital filter design problem, the mathematics are complicated by the 
approximation being defined on the unit circle. In terms ofz, frequency is a polar 
coordinate variable. It is often much easier and clearer to formulate the problem 
such that frequency is a rectangular coordinate variable, which is the way it 
naturally occurs for analog filters using the Laplace complex variable s. A 
particular change of complex variable that converts the polar coordinate 
variable to a rectangular coordinate variable is the bilinear transformation1-2 

The details of the bilinear and alternative transformations are covered in Section 
7.3. For the purposes of this section it is sufficient for us to that the 
frequency response of a filter in terms of the new variable is found by evaluating 
H(s) along the imaginary axis (i.e., for s = jw). The frequency response of analog 
filters is obtained in exactly this way. 

There are two reasons that the approximation process is often formulated in 
terms of the square of the magnitude of the transfer function rather than in terms 
of the real and/or imaginary parts of the complex transfer function or in terms of 
the magnitude of the transfer function. The first reason is that the squared 
magnitude frequency-response function is an analytic, real-valued function of a 
real variable, and this considerably simplifies the problem of finding a "best" 
solution. The second reason is that the effects of the signal or interference are 
often stated in terms of the energy or power, which is proportional to the square 
of the magnitude of the signal or noise. 
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To move back and forth between the transfer function F(s) and the squared 
magnitude frequency response IF(jo)lZ, we define an intermediate function. We 
define the analytic complex-valued function of the complex variable s by 

9 ( s )  = F(s)F( - s), (7.2) 

which is related to the squared magnitude by 

If 

then 

In this context the approximation is arrived at in terms of F(jw) ,  and the result is 
an analytic function 9 ( s )  with a factor F(s), which is the desired filter transfer 
function in terms of the rectangular variable s. We can define a comparable 
function in terms of the digital transfer function, using the polar variable z by 
defining 

which gives the magnitude squared frequency response when evaluated around 
the unit circle-that is, z = ej". 

The next section develops four useful approximations, using the continuous- 
time Laplace transform formulation in s. These approximations will be 
transformed into digital transfer functions by techniques covered in Section 7.3. 
They can also be used directly for analog filter design. 

7.2 CLASSICAL ANALOG LOW-PASS FILTER APPROXIMATIONS 

Four basic filter approximations are considered to be standard. They are often 
developed and presented in terms of a normalized low-pass filter that can be 
modified to give other versions, such as high-pass or bandpass filters. These four 



162 Design of Infinite Impulse-Response Filters 

forms use Taylor series approximations and Chebyshev approximations in 
various ~ornbinations.'~~"~'~-'~ None is defined in terms of a mean squared 
error measure. Although it would be an interesting error criterion, the reason is 
that there is no closed-form solution to the LS error approximation problem, 
which is nonlinear for the IIR filter. 

This section develops the four classical approximations in terms of the 
Laplace transform variable s. They can be used as prototype filters to be 
converted into digital filters or used directly for analog filter design. 

The desired low-pass filter frequency response is similar to the case for the 
FIR filter, given in Fig. 3.1 and (3.26). Here it is expressed in terms of the 
magnitude squared of the transfer function, which is a function of s = jw and is 
illustrated in Fig. 7.1. 

The Butterworth filter uses a Taylor series approximation to the ideal at both 
w = 0 and w = co. The Chebyshev filter uses a Chebyshev (min-max) approxi- 
mation across the pass band and a Taylor series at w = a. The inverse or type 
I1 Chebyshev filter uses a Taylor series approximation at w = 0 and a 
Chebyshev approximation across the stop band. The elliptic function filter uses 
a Chebyshev approximation across both the pass band and stop band. The 
squared magnitude frequency response for these approximations to the ideal in 
Fig. 7.1 is given in Fig. 7.2, and the design is developed in the following sections. 

7.2.1 Butterworth Filter Properties 

This section develops the properties of the Butterworth filter, which has as its 
basic concept a Taylor series approximation to the desired frequency response. 
The measure of the approximation is the number of terms in the Taylor series 
expansion of the actual frequency response that can be made equal to those of 
the desired frequency response. The optimal or best solution will have the 
maximum number of terms equal. The Taylor series is a power series expansion 
of a function in the form 

where 

FIGURE 7.1. Desired frequency response of an ideal low-pass filter. 
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and so on, with the coefficients of the Taylor series being proportional to the 
various order derivatives of F(w) evaluated at w = 0. A basic characteristic of 
this approach is that the approximation is all performed at one point (i.e., at one 
frequency). The ability of this approach to give good results over a range of 
frequencies depends on the analytic properties of the response. 

The general form for the squared magnitude response is an even function of o 
and, therefore, is a function of w2 expressed as 

To obtain a solution that is a low-pass filter, we perform the Taylor series 
expansion around o = 0, requiring F ( 0 )  = 1 and F(jco) = 0 (i.e., do = c,, 
N > M ,  and c2, # 0). We write it as 

Combining (7.5) and (7.6) gives 

The best Taylor approximation requires that FGo) and the desired ideal 
response have as many terms as possible equal in their Taylor series expansion 
at a given frequency. For a low-pass filter the expansion is around w = 0, which 
requires E(o) to have as few low-order o terms as possible. This condition is 
achieved by setting 

C Z N  2 = 0, 

C ~ N  = nonzero. 

Because the ideal response in the pass band is a constant, the Taylor series 
approximation is often called maximally pa t .  

Equation (7.8) states that the numerator of the transfer function may be 
chosen arbitrarily. Then by setting the denominator coefficients of g ( s )  equal to 
the numerator coefficients plus one higher-order term, we obtain an optimal 
Taylor's series appro~imation '~.  





FIGURE 7.2. Frequency responses of the four classical low-pass IIR filter approximations. (a) 
Butterworth; (b)  Chebyshev; (c) inverse Chebyshev; (d) elliptic function. 
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Since the numerator is arbitrary, its coefficients can be chosen for a Taylor 
approximation to zero at o = a. We do this by setting do = 1 and all other d's 
equal to zero. The resulting magnitude squared function is'319 

The value of the constant cZN determines at which value of w the transition of 
pass band to stop band occurs. For this development it is normalized to c2, = 1, 
which causes the transition to occur at w = 1. These approximations and 
normalizations give the simple form for what is called the Butterworth filter: 

This approximation is sometimes called maximally flat at both o = 0 and 
o = oo, since it is simultaneously a Taylor series approximation to unity at 
o = 0 and to zero at o = oo. A graph of the resulting frequency-response 
function is shown in Fig. 7.3 for several N. 

The characteristics of the normalized Butterworth filter frequency response 
are the following: 

0 

FIGURE 7.3. Butterworth filter frequency responses. 
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1. It is very close to the ideal near w = 0 and w = m. 

2. It is very smooth at all frequencies with a monotonic decrease from w = 0 
to oo. 

3. The largest difference occurs between the ideal and actual responses near 
the transition at w = 1, where JF(j,)12 = 4. 

Although not part of the approximation addressed, the phase curve is also very 
smooth. 

An important feature of the Butterworth filter is the closed-form formula for 
the solution, F(s). From (7.3) the expression for 4 ( s )  may be determined as 

This function has 2N poles evenly spaced around a unit radius circle and 2N 
zeros at infinity. The determination of F(s) is very simple. To have a stable filter, 
we select F(s) to have the N left-hand plane poles and N zeros at infinity; F(-s) 
will necessarily have the right-hand plane poles and the other N zeros at infinity. 
The locations of these poles on the complex s plane for N = 1, 2, 3, and 4 are 
shown in Fig. 7.4. 

Pole Location 
Because of the geometry of the pole positions, simple formulas are easy to derive 
for the pole locations. If the real and imaginary parts of the pole location are 
denoted by 

s = u + j w ,  

( c )  (4 
FIGURE 7.4. Pole locations for Butterworth filter transfer. Functions F(s) on the complex s plane. 
(a) N = 1; (b)  N = 2; (c) N = 3; ( d )  N = 4. 
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the locations of the N poles are given by 

for N values of k where 

k =  f 1 ,  k 3 ,  + 5 , .  . . , f ( N -  1) for Neven, 

k =  0, f 2 ,  f 4  , . . . ,  k ( N - 1 )  forNodd.  

Because the coefficients of the numerator and denominator polynomials of F(s) 
are real, the roots occur in complex-conjugate pairs. The conjugate pairs in 
(7.1 1 )  can be combined to be the roots of second-order polynomials so that for N 
even F(s) has the partially factored form 

for k = 1 ,  3, 5 , .  . . , N - 1. For N odd, F(s) has a single real pole; therefore 

for k = 2, 4, 6, . . . , N - 1. This form is convenient for the cascade and parallel 
realizations discussed in Chapter 8. 

A single formula for the pole locations for both even and odd N is 

for N values of k, where k = 0, 1, 2,. . . , N - 1. 
One of the important features of the Butterworth filter design formulas is that 

the pole locations are found by independent calculations, which do not depend 
on each other or on factoring a polynomial. Program 9 calculates these values. 

The classical form of the Butterworth filter given in (7.10) is discussed in many 
 book^.',^^^,"^'^,'^^^^ The less well-known form given in (7.8) also has many 
useful  application^'^. If the frequency location of unwanted signals is known, 
the zeros of the transfer function given by the numerator can be set to best reject 
them. It is then possible to choose the pole by using (7.8) to have a pass band as 
flat as the classical Butterworth filter. Unfortunately, there are no formulas for 
the pole locations; therefore, the denominator polynomial must be factored. 
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Summary 

This section derived design procedures and formulas for a class of filter transfer 
functions that approximate the ideal desired frequency response by a Taylor 
series. If the approximation is made at o = 0 and o = co, the resulting I'llter is 
called a Butterworth filter and the response is called maximally flat at zero and 
infinity. This filter has a very smooth frequency response and, although not 
explicitly designed for, a smooth phase response. Simple formulas for the pole 
locations were derived and are implemented in the design program in the 
appendix. 

7.2.2 Butterworth Filter Design Procedures 

This section considers the process of going from given specifications to use of the 
approximation results derived in the previous section. The Butterworth filter is 
the simplest of the four classical filters in that all the approximation effort is 
placed at two frequencies: o = 0 and o = co. The transition from pass band to 
stop band occurs at a normalized frequency o = 1. Assuming that this 
transition frequency or band edge can later be scaled to any desired frequency, 
the only parameter to be chosen in the design process is the order N. 

The filter specifications that are consistent with what is optimized in the 
Butterworth filter are the degree of "flatness" at o = 0 (DC) and at o = co. The 
higher the order, the flatter the frequency response at these two points. Because 
of the analytic nature of rational functions, the flatter the response is at o = 0 
and oo, the closer it stays to the desired response throughout the whole pass 
band and stop band. An indirect consequence of the filter order is the slope of 
the response at the transition between pass band and stop band. The slope of the 
squared magnitude frequency response at o = 1 is 

N 
slope = 9 ' ( j l )  = - - 

2 

The effects of the increased flatness and increased transition slope of the 
frequency response as N increases are illustrated in Fig. 7.3. 

In some cases specifications state the response must stay above or below a 
certain value over a given frequency band. Although this type of specification is 
more compatible with a Chebyshev error optimization, it is possible to design a 
Butterworth filter to meet the requirements. If the magnitude of the frequency 
response of the filter over the pass band of 0 < o < o, must remain between 
unity and G, where o, < 1 and G < 1, we find the required order by determining 
the smallest integer N satisfying 

N 2  
l ~ g ( ( l / G ) ~  - 1) 

2 log 0, . 
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FIGURE 7.5. Pass-band specifications for designing a Butterworth filter. 

This specification is illustrated in Fig. 7.5, where IF1 must remain above 0.9 for o 
up to 0.9; that is, G = 0.9 and o, = 0.9. These requirements require an order of 
at least N = 7 .  

If stop-band performance is stated in the form of requiring that the response 
stay below a certain value for frequency above a certain value-that is, IF1 < G 
for o > us--the order is determined by the same formula (7.15) with o, 
replaced by w,. 

Example 7.1. Design of a Butterworth Low-Pass ZZR Filter 
To illustrate the calculations, we design a low-pass Butterworth filter. We 

want the frequency response to stay above 0.8 for frequencies up to 0.9. Formula 
(7.15) for determining the order gives a value of 2.73; therefore, the order is 3. 
The analytic function corresponding to the squared magnitude frequency 
response in (7.10) is 

The transfer function corresponding to the left half-plane poles of F'(s) are 
calculated from (7.1 1) or (7.12) to give 
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We obtain the frequency response by setting s = jw, which has a plot illustrated 
in  Fig. 7.3 for N = 3. The pole locations are the same as shown in Fig. 7 .4~ .  

7.2.3 Chebyshev Filter Properties 

Frequently the Butterworth filter does not give a sufficiently good approxi- 
mation across the complete pass band. The Taylor series approximation is often 
not suited to the way specifications are given for filters. An alternative error 
measure is the maximum of the absolute value of the difference between the 
actual filter response and the ideal response. This measure is considered over the 
total pass band. It is the Chebyshev error measure, which was defined and 
applied to the FIR filter design problem in Section 3.3. For the IIR filter the 
Chebyshev error is minimized over the pass band, and a Taylor series 
approximation at w = co is used to determine the stop-band performance. This 
mixture of methods in the IIR case is called the Chebyshevjlter, and we obtain 
simple design formulas just as for the Butterworth filter. 

The design of Chebyshev filters is particularly interesting, because the results 
of a very elegant theory ensure that constructing a frequency-response function 
with the proper form of equal ripple in the error will give a minimum Chebyshev 
error without explicitly minimizing anything. That allows a straightforward set 
of design formulas to be derived, which can be viewed as a generalization of the 
Butterworth  formula^.'^*'^ 

The form for the magnitude squared of the frequency-response function for 
the Chebyshev filter is 

where CN(o) is an Nth-order Chebyshev polynomial and E is a parameter that 
controls the ripple size. This polynomial in o has very special characteristics 
that result in the optimality of the response function (7.19). 

Cheb yshev Polynomials 
The Chebyshev polynomial is a powerful function in approximation theory. 
Although the function is a polynomial, it is best defined and developed in terms 
of trigonometric functions by',7*18,'9 

CN(w) = cos(N cos - '(a)), (7.20) 

where CN(o) is an Nth-order, real-valued function of the real variable w. The 
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development is made clearer by introducing an intermediate complex variable 
4: 

C,(w) = cos(Ncj), where w = cos(4). (7.21) 

Although this definition of C(o) may not at first appear to give a polynomial, the 
following recursive relation derived from (7.21) shows that it is indeed a 
polynomial. 

From (7.20) it is clear that C, = 1 and C, = o ,  and from (7.22) it follows that 

Other relations useful for developing these polynomials are 

c; = +[C2, + 11, 
(7.24) 

C,, = C,(C,(o)) where M and N are coprime. 

These functions are remarkable18,'9. They oscillate between + 1 and - 1 for 
- 1 < o < 1 and go monotonically to 5 co outside that domain. All N of their 
zeros are real and fall in the domain - 1 < o < 1; that is, C, approximates zero 
over the range of o from - 1 to + 1. In addition, the values for o where C, 
reaches its local maxima and minima and is zero are easily calculated from 



FIGURE 7.6. Chebyshev polynomials for N = 1, 2, 3, and 4. 
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Pass band W 

FIGURE 7.7. Fifth-order Chebyshev filter frequency response. 

(7.21). For - 1 < o < 1 we can plot C d o )  by using the concept of Lissajous 
figures1'. Figure 7.6 shows example plots for C,, C,, C,, and C,. Figure 7.7 gives 
the filter frequency-response function for N = 5 and shows the pass-band ripple 
in terms of the parameter E. 

The approximation parameters must be clearly understood. The pass-band 
ripple is defined to be the difference between the maximum and the minimum of 
IF1 over the pass-band frequencies of 0 < o < 1. This point can be confusing 
because two definitions appear in the literature. Most digital's2 and 
filter design books use the definition just stated. Approximation literature, 
especially concerning FIR filters, and the ASP1 design program'' use one half of 
this value, which is a measure of the maximum error, ( I F (  - I F , I / ,  where IF,,( is 
the center line in the pass band of Fig. 7.7, around which JFI oscillates. 

The Chebyshev theory states that the maximum error over that band is 
minimal and this optimal approximation function has equal ripple over the pass 
band. It is easy to see that E in (7.19) determines the ripple in the pass band and 
the order N determines the rate that the response goes to zero as o goes to 
infinity. 

Pole Locations 

We now develop a method for finding the pole locations for the Chebyshev filter 
transfer function. The details of this section can be skipped, and the results in 
(7.31) can be used if the reader desires. 
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From (7.19) we see that the poles of F ( s )  occur when 

From (7.21) define q5 = c o s l ( o )  with real and imaginary parts given by 

q5 =cos-'(0) = u +jv. (7.26) 

This gives, from (7.21) and (7.25), 

j C, = cos(Nq5) = cos(Nu)cosh(Nv) - j sin(Nu)sinh(No) = f -, (7.27) 
E 

which implies that the real part of C, is zero. Therefore 

cos(Nu)cosh(No) = 0, 

which implies 

cos(Nu) = 0, 

which implies that u assumes values of 

For these values of u sin(Nu) = f 1, and (7.27) becomes 

which requires v to assume a value of 

u = u o =  
sinh - '(11~) 

N .  

Using s = jo and (7.26) give 

s = jo = j cos(4) = j cos(u + ju) 

= j cos 
((2kL1)n + jvo). 
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This equation gives the location of the N poles in the s plane as 

Sk = ak + j o k ,  

where 

for N values of k. where 

+ 1 ,  + 3 ,  + 5 , .  . . ,  + ( N -  1) for Neven, 
0, + 2 ,  +4, .  . . , f ( N  - 1) for N odd. 

We can derive a partially factored form for F(s) from (7.31) by using the same 
approach as for (7.12) for the Butterworth filter. For N even the form is 

For k = 1 , 3 , 5 , .  . . , N - 1. For N odd, F(s) has a single real pole, and therefore 
the form 

for k = 2 , 4 ,  6, . . . , N - 1. This form is convenient for the cascade and parallel 
realizations discussed in Chapter 8. 

A single formula for even and odd N is 

for N values of k, where k = 0, 1, 2 , .  . . , N - 1. Note the similarity to the pole 
locations for the Butterworth filter in (7.12) and (7.13). Cross-multiplying, 
squaring, and adding the terms in (7.33) gives 

This equation is that of an ellipse and shows that the poles of a Chebyshev filter 
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lie on an ellipse in a way similar to the way poles of a Butterworth filter lie on a 
-3,7,18.19 

Summary 

This section developed the classical Chebyshev filter approximation, which 
minimizes the maximum error over the pass band and uses a Taylor series 
approximation at infinity. Thus the error is equal ripple in the pass band. The 
transfer function was developed in terms of the Chebyshev polynomial, and 
explicit formulas were derived for the location of the transfer function poles. 
These formulae can be expressed as a modification ef the pole locations for the 
Butterworth filter and are implemented in Program 9. 

It is possible to develop a theory for Chebyshev pass-band approximation 
and arbitrary zero location similar to the Taylor series result in (7.8). That 
theory is described in references 24 and 25 and is not covered in this book. 

7.2.4 Chebyshev Filter Design Procedures 

The Chebyshev filter has a pass band optimized to minimize the maximum error 
over the complete pass-band frequency range, and a stop band controlled by the 
frequency response being maximally flat at o = a. The pass-band ripple and 
the filter order are the two parameters to be determined by the specifications. 

The form for the specifications that is most consistent with the Chebyshev 
filter formulation is a maximum allowed error in the pass band and a desired 
degree of "flatness" at o = m. The slope of the response near the transition from 
pass band to stop band at to = 1 becomes steeper as both the order increases 
and the allowed pass-band and error ripple increases. The dropoff is more rapid 
than for the Butterworth 

As stated earlier, the design parameters must be clearly understood to obtain 
a desired result. The pass-band ripple is defined to be the difference between the 
maximum and the minimum of I FI over the pass-band frequencies of 0 < o < 1. 
This point can be confusing because two definitions appear in the literature. 
Most digital'*2 and filter design books use the definition just stated. 
Approximation literature, especially concerning FIR filters, and the ASP1 design 
program" use half this value, which is a measure of the maximum error, 
IIF( - IFd(I, where JFdI is the center line in the pass band of Fig. 7.7 around which 
IF1 oscillates. The following formulas relate the pass-band ripple d, the pass- 
band ripple a in positive dB, and the transfer function parameter &. 

a = 10 log(1 + c2) = -20 log(1 - d), (7.35) 
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In some cases stop-band performance is not given in terms of degree of 
flatness at w = co, but in terms of a maximum allowed magnitude G in the stop 
band above a certain frequency w,; that is, G > (FJ > 0 for 1 < w, < w < co.-For 
a given E this will determine the order as the smallest positive integer satisfying 

The design of a Chebyshev filter involves the following steps: 

1. The maximum allowed pass-band variation must be in the form of d or a. 
From this variation the parameter E is calculated by (7.36). 

2. The order N is determined by the desired flatness at w = co or a maximum 
allowed response for frequencies above w, by (7.38). 

3. v, is calculated from E and n by (7.29), and the scale factors sinh(v,) and 
cosh(v,) are then determined. 

4. The pole locations are calculated from (7.31) or (7.33) by scaling the poles 
of a Butterworth prototype filter. 

5. These pole locations are combined in (7.32) to give the final filter transfer 
function. 

This process is easily programmed for computer-aided design, as illustrated in 
Program 9 in the appendix. 

If the design procedure uses (7.38) to determine the order and the right-hand 
side of the equation is not exactly an integer, it is possible to improve on the 
specifications. Direct use of the order with E from (7.36) gives a stop-band gain at 
o, that is less than G, or the same design can be viewed as giving the maximum 
allowed gain G at a lower frequency than w,. An alternative approach is to solve 
(7.38) for a new value of E, then cause (7.38) to be an equation with the specified 
w, and G. This approach gives a filter that exactly meets the stop-band 
specifications and gives a smaller pass-band ripple than originally requested. A 
similar set of alternatives exists for the elliptic function filter in Section 7.2.7. 

Example 7.2. Design of a Chebyshev Low-Pass Filter 
The design specifications require a maximum pass-band ripple of d = 0.1 or 

a = 0.91515 dB and can allow no greater response than G = 0.2 for frequencies 
above w, = 1.6 rad/s. Given d = 0.1 or a = 0.9151 5, equation (7.36) implies I 

1 

Given G = 0.2 and w, = 1.6, equation (7.38) implies an order of N = 3. From E 

and N, u, is 0.49074 from (7.29) and 
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These multipliers are used to scale the root locations of the third-order 
Butterworth filter in Example 7.1 to give 

F(s)  = 
1 

s3  + 1.02135s2 + 1.271579s + 0.516185' 
(7.42) 

The frequency response is shown in Fig. 7.8, and the pole locations on the s 
plane are shown in Fig. 7.9. 

7.2.5 Inverse Chebyshev Filter Properties 

A second form of the mixture of the Chebyshev approximation and a Taylor 
series approximation is called the inverse Chebyshev filter or the Chebyshev I I  
filter. This error measure uses a Taylor's series for the pass band, just as for the 

FIGURE 7.8. Example third-order Chebyshev filter frequency response. 
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s plane + 
FIGURE 7.9. Pole locations in the s plane for the example Chebyshev filter. 

W 

FIGURE 7.1 0. An inverse Chebyshev filter frequency response. 

Butterworth filter, and minimizes the maximum error over the total stop band. 
It reverses the types of approximation used in the preceding section. A fifth- 
order example is illustrated in Fig. 7.10. 

It is easier to modify the results from the regular Chebyshev filter than to 
develop the approximation directly. First, the frequency variable o in the 
regular Chebyshev filter, described in (7.19), is replaced by l/o, which inter- 
changes the characteristics at o = 0 and o = 0 and does not change the 
performance at o = 1. Thus a Chebyshev low-pass filter is converted to a 
Chebyshev high-pass filter, as illustrated in Fig. 7.1 1. This high-pass character- 



7.2 Classical Analog Low-Pass Filter Approximations 181 

FIGURE 7.11. Low-Pass to high-pass transformation. 

istic is subtracted from unity to give the desired low-pass inverse Chebyshev 
frequency response illustrated in Fig. 7.10. The resulting magnitude squared 
frequency-response function is 

Zero Locations 
The zeros of the Chebyshev polynomial CN(w) are easily found from (7.20) by 

which requires 
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for 

The zeros of the inverse Chebyshev filter transfer function are derived from (7.43) 
and (7.45) to give 

The zero locations are not functions of e; that is, they are independent of the 
stop-band ripple. 

Pole Locations 
The pole locations are the reciprocal of those for the regular Chebyshev filter 
given in (7.31) or (7.33). If the poles for the inverse filter are denoted by 

the locations in terms of the variables of (7.32) or (7.33) are 

Although this gives a straightforward formula for calculating the location of 
the poles and zeros of the inverse Chebyshev filter, they do not lie on a simple 
geometric curve as did those for the Butterworth and Chebyshev filters. Note 
that the conditions of (7.8) for a Taylor series approximation with preset zero 
locations are satisfied in (7.43). 

A partially factored form analogous to (7.12) for the Butterworth filter and 
(7.32) for the Chebyshev filter can be written for the inverse Chebyshev filter by 
using the zero locations from (7.47) and the pole locations from the regular 
Chebyshev filter given in (7.31) and (7.32). For N even we get 

for k = 1 , 3 , 5 , .  . . , N - 1. For N odd, F(s) has a single pole and therefore is of the 
form 
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Because of the relationships between the locations of the poles of the 
Butterworth, Chebyshev, and inverse Chebyshev filters, it is easy to write a 
design program with many common calculations. That is illustrated in Program 
9 in the appendix. 

7.2.6 Inverse Chebyshev Filter Design Procedures 

The natural form for the specifications of an inverse Chebyshev filter is in terms 
of the response flatness at w = 0 (to determine the pass band) and a maximum 
allowable response in the stop band. The filter order and the stop-band ripple 
are the parameters to be determined by the specifications. The rate of dropoff 
near the transition from pass band to stop band is similar to the regular 
Chebyshev filter. Because practical specifications often allow more pass-band 
ripple than stop-band ripple, the regular Chebyshev filter will usually have a 
sharper dropoff than the inverse Chebyshev filter will. Under those conditions 
the inverse Chebyshev filter will have a smoother phase response and less time- 
domain echo effects. 

The stop-band ripple d is simply defined as the maximum value that IF(jw)l 
assumes in the stop band, which is the set of frequencies 1 < w < ca. An 
alternative specification is the minimum allowed attenuation over stop band 
expressed in dB as b. The following formulas relate the stop-band ripple d, the 
stop-band attenuation b in positive dB, and the transfer function parameter E in 
(7.43): 

In some cases pass-band performance is given not in terms of degree of 
flatness at w = 0 but in terms of a minimum allowed magnitude G in the pass 
band up to a certain frequency w,; that is, 1 > IF1 > G for 0 < w < w, < 1. For 
a given E this requirement will determine the order as the smallest positive 
integer satisfying 
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The design of an inverse Chebyshev filter is summarized in the following 
steps: 

1. The maximum allowed stop-band response must be given in the form of d 
or b. From this response the parameter E is calculated by (7.51). 

2. The order N is determined from the desired flatness at o = 0 or from a 
minimum allowed response for frequencies up to o, by (7.54). 

3. u,, sinh(v,), and cosh(vo) are calculated from (7.29) and (7.31), just as for the 
regular Chebyshev filter. 

4. The pole locations for the prototype Chebyshev filter are calculated from 
(7.31) or (7.33) and then "inverted" according to (7.48) to give the inverse 
Chebyshev filter pole locations. 

5. The pole locations are combined in (7.48) to give the final filter transfer 
function denominator. 

6. The zero locations are calculated from (7.47) and combined with the pole 
locations to give the total transfer function (7.49) or (7.50). 

Example 7.3. Design of an lnverse Chebyshev Low-Pass Filter 
A third-order inverse Chebyshev low-pass filter is desired with a maximum 

allowed stop-band ripple of d = 0.1 or b = 20 dB. This value corresponds to an E 

of 0.100504 and, together with N = 3, results in a v, of 0.99774. The scale factors 
are sinh(vo) = 1.171717 and cosh(u,) = 1.540429. The prototype Chebyshev 
filter transfer function is 

The zeros are calculated from (7.47), and the poles of the prototype are inverted 
to give, from (7.50), the desired inverse Chebyshev filter transfer function 

The frequency response of this filter is shown in Fig. 7.12, and the locations of 
the poles and zeros are shown in Fig. 7.13. 

7.2.7 Elliptic Function Filter Properties 

In this section a design procedure is developed that uses a Chebyshev error 
criterion in both the pass band and the stop band. This is the fourth possible 
combination of Chebyshev and Taylor series approximations in the pass band 
and the stop band. The resulting filter is called an elliptic functionfilter, because 
elliptic functions are normally used to calculate the pole and zero locations. It is 
also sometimes called a Cauer filter or a rational Chebyshev filter, and it has 
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FIGURE 7.1 2 .  Example inverse Chebyshev filter frequency response. 

FIGURE 7.13 .  Pole and zero locations in the s plane for the example inverse Chebyshev filter 
transfer function. 

equal ripple approximation error in the pass band and the stop band.7.'s,'9.23 
The error criteria of the elliptic function filter are particularly well suited to 

the way specifications for filters are often given. Hence, of the four classical filter 
design methods, elliptic function filter design usually gives the lowest-order filter 
for a given set of specifications. Unfortunately, the design of this filter is the most 
complicated. But because it is so efficient, some understanding of the mathema- 
tics behind the design is worthwhile. 

This section sketches an outline of the theory of elliptic function filter design. 
One should'simply accept the details and properties of the elliptic functions 
themselves and concentrate on understanding the overall picture. A more 
complete development is available in references 7, 17 and 23. Straightforward 
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design of elliptic function filters can be accomplished by skipping this section 
and going directly to Section 7.2.8 and Program 9 in the appendix. 

Because the pass-band and stop-band approximations are over the entire 
bands, a transition band between the two must be defined. Using a normalized 
pass-band edge, we define the bands by 

O , < w 6 1  (pass band), 
1 < w  < o, (transition band), (7.57) 

o, < o 6 oo (stop band). 

See Fig. 7.14. 
The characteristics of the elliptic function filter are best described in terms of 

the four parameters that specify the frequency response: 

1. The maximum variation or ripple in the pass band 6,. 
2. The width of the transition band (o, - 1). 
3. The maximum response or ripple in the stop band 6,. 
4. The order of the filter N. 

The result of the design is that for any three given parameters, the fourth is 

W 

FIGURE 7.14. Elliptic function filter frequency response. 
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minimum. This description of a filter frequency response is very flexible and 
powerful. 

The form of the frequency-response function is a generalization of that for the 
Chebyshev filter: 

where 

with F(s) being the prototype analog filter transfer function similar to (7.2). G(o) 
is a rational function that approximates zero in the pass band and infinity in the 
stop band. The definition of this function is a generalization of the definition of 
the Chebyshev polynomial. 

Elliptic Functions 
To develop analytical expressions for equiripple rational functions, we outline 
an interesting class of transcendental functions, called the Jacobian elliptic 
functions. These functions can be viewed as a generalization of the normal 
trigonometric and hyperbolic functions. The elliptic integral of the first kind2' is 
defined as 

The trigonometric sine of the inverse of this function is defined as the Jabocian 
elliptic sine of u with modulus k and is denoted 

sn(u, k) = sin(+(u, k)). (7.60) 

A special evaluation of (7.59) is known as the complete elliptic integral 
K = ~(7~12, k). It can be shownZ1 that sn(u) and most of the other elliptic 
functions are periodic with periods 4K if u is real. Hence, K is also called the 
quarter period. Figure 7.15 is a plot of sn(u, k) for several values of the modulus k. 
For k = 0, sn(u,O) = sin(u). As k approaches 1 ,  sn(u, k) looks like a "fat" sine 
function. For k = 1, sn(u, 1) = tanh(u) and is not periodic. 

The quarter period or complete elliptic integral K is a function of the 
modulus k and is illustrated in Fig. 7.16. For a modulus of zero the quarter 
period is K = 4 2 ,  and it does not increase much until k approaches 1. It then 
increases rapidly and goes to infinity as k goes to 1. 

Another parameter is the complementary modulus k', defined by 
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FIGURE 7.16. The complete elliptic integral versus the modulus k. 
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where we assume 0 < k, k' < 1; k, k' real. The complete elliptic integral of the 
complementary modulus is denoted K t .  

Other elliptic functions that are rather obvious generalizations are 

cn(u, k) = cos(4(u, k)), 
SC(U, k) = tan(& k)), 
CS(U, k) = ctn(4(u, k)), 
nc(u, k) = sec(4(u, k)), 
ns(u, k) = csc(4(u, k)). 

There are six other elliptic functions that have no trigonometric  counterpart^.^' 
A needed one is 

dn(u, k) = J1 - k2sn2(u, k). (7.63) 

Many interesting properties of the elliptic functions exist.21 They obey a large 
set of identities such as 

They have derivatives that are elliptic functions. For example, 

d 
- sn(u, k) = cn(u, k)dn(u, k). (7.65) 
du 

The elliptic functions are the solutions of a set of nonlinear differential equations 
of the form 

Some of the most important properties for the elliptic functions are as functions 
of a complex variable. For a purely imaginary argument 

sn(jv, k) = jsc(v, k'), cn(jv, k) = nc(u, k'). (7.66) 

These relations indicate that the elliptic functions, in contrast to the circular and 
hyperbolic trigonometric functions, are periodic in both the real and imaginary 
parts of the argument, with periods related to K and K', respectively. 

One particular value assumed by the sn function that is important in creating 
a rational function is 
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The Cheb yshev Rational Function 
The rational function needed in (7.58) is sometimes called a Chebyshev rational 
function because of its equiripple properties. It can be defined in terms of two 
elliptic functions with moduli k and k, by 

G(w) = sn(n sn - '(w, k), k,). (7.68) 

In terms of the intermediate complex variable 4,  G(w) and w become 

G(w) = sn(n4, k,), w = sn(4, k). (7.69) 

It can be ~ h o w n ~ . ' ~  that G(w) is a real-valued rational function if the parameters 
k, k,, and n take on special values. Note the similarity of the definition of G(w) to 
the definition of C,(w) in (7.20) and (7.21). In this case, however, n is not 
necessarily an integer and is not the order of the filter. Requiring that G(w) be a 
rational function requires an alignment of the imaginary periods7+l7 of the two 
elliptic functions in (7.69). It also requires alignment of an integer multiple of the 
real periods, The integer multiplier is denoted by N and is the order of the 
resulting filter.7*'7 These two requirements are stated by the following very 
important relations: 

nK' = K ;  alignment of imaginary periods, 
(7.70) 

nK = NK, alignment of a multiple of the real periods, 

When the parameter n is removed, (7.70) become 

K'K, ' 

These relationships are central to the design of elliptic function filters. N is an 
odd integer that is the order of the filter. For N = 5 the resulting rational 
function is shown in Fig. 7.17. 

This function is the basis of the approximation necessary for the optimal filter 8 
frequency response. It approximates zero over the frequency range - 1 < w < 1 
by an equiripple oscillation between + 1 and - 1. It also approximates infinity 
over the range Ilk < JwJ < ar, by a reciprocal oscillation that keeps 
(F(w)l > llk,. The zero approximation is normalized in both the frequency 
range and the F(w) values to unity. The infinity approximation has its frequency 
range set by the choice of the modulus k, and the minimum value of IF(to)( is set 
by the choice of the second modulus k,. 

If k and k, are determined from the filter specifications, they in turn 
determine the complementary moduli k' and k;, which altogether determine the 
four values of the complete elliptic integral K needed to determine the order N in 
(7.71). In general, this sequence of events will not produce an integer. In practice, 
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FIGURE 7.1 7. Fifth-order elliptic rational function. 

however, the next larger integer is used, and either k or k, (or perhaps both) is 
altered to satisfy (7.71). 

In addition to the two-band equiripple characteristics, G(o) has another 
interesting and valuable property. The pole and zero locations have a reciprocal 
r e l a t i o n ~ h i p ~ ~ . ~ ~  that can be expressed by 

1 
where w, = - . 

k 

This property states that if the zeros of G(w) are located at a,,, the poles are 
located at 

If the zeros are known, the poles are known, and vice versa. A similar relation 
exists between the points of zero derivatives in the 0 to 1 region and those in the 
llk to c~ region. 

The zeros of G(w) are found from (7.69) by requiring 

G(w) = sn(n4, k,) = 0, 

which implies 
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From (7.69) this relation gives 

Using (7.70), we can reformulate (7.73) so that n and K ,  are not needed. For N 
odd the zero locations are 

We find the pole locations from these zero locations by using (7.72). The 
locations of the zero-derivative points are given by 

in the 0 to 1 region, and the corresponding points in the llk to co region are 
found from (7.72). 

These relations assume that N is an odd integer. A modification for even N is 
necessary. For proper alignment of the real periods the original definition of 
G(w) in (7.69) is changed to 

which, for N even, gives for the zero locations 

The even and odd N cases of (7.74) and (7.77) can be combined to give 

for 

0,2, 4, . . . , N - 1 for N odd, 
i = (  

1, 3, 5, . . . , N - 1 for N even, 

with the poles determined from (7.72). 
Note that it is possible to determine G(w) from k and N without explicitly 

using k, or n. Values for k, and n are implied by the requirements of (7.70) or 
(7.71). 

i 
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Zero Locations 
The locations of the zeros of the filter transfer function F(o) are easily found, 
since they are the same as the poles of G(o), given in (7.78). 

for 

0 , 2 , 4  , . . . ,  N - 1  Nodd, 
i = (  1 3 , 5 , .  1 Neven. 

These zeros are purely imaginary and lie on the o axis. 

Pole Locations 
The pole locations are somewhat more complicated to find. We use an approach 
similar to that used for the Chebyshev filter in (7.25). F(s) becomes infinite when 

Using (7.69) and the periodicity of sn(u, k), we then get 

Define v ,  to be the second term in (7.81) by 

which is similar to (7.29) for the Chebyshev case. Using the properties of sn of an 
imaginary variable and (7.71), we obtain 

vo = (L) sc- ' (i, It,). 
NKl 
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The poles are now found from (7.69), (7.81). and (7.82)  to be 

This equation can be more clearly written by using the summation formula2' for 
the elliptic sine function: 

cn dn sn' cn' + j sn dn' 
S . =  
Pl 1 - dn2 snf2 

where 

sn = sn($, k ) ,  cn = c n G ,  k ) ,  dn = dn --, k , (: ) (7.85) 
sn' = sn(u,, k'), cn' = cn(u,, k'), dn' = dn(u,, k'), 

for 

N odd: i = 0, 2 , 4 , .  . . , 
N even: i = 1 ,  3, 5, . . . . 

The theory of Jacobian elliptic functions can be found in references 17 and 21 
and its application to filter design in references 7 ,  17-19, and 23. The best 
techniques for calculating the elliptic functions seem to use the arithmetic- 
geometric mean; efficient algorithms are presented in reference 22. A design 
program is given in reference 23 and the versatile FORTRAN Program 9 ,  which 
is easily related to the theory in this chapter, is given in the appendix. 

The transfer function F(s) pole locations can also be found by obtaining the 
zeros from (7.79) and finding G(w) by using the reciprocal relation of the poles 
and zeros (7.72). F(s) is constructed from G(w), E from (7.58), and the poles are 
found by a root-finding algorithm. Another possibility is to find the zeros from 
(7.79) and the poles from the methods for finding a Chebyshev pass band from 
arbitrary  zero^."^^^^^^ These approaches avoid calculating r ,  by (7.82) or 
determining k from KIK',  as is described in reference 23. The efficient algorithms 
for evaluating the elliptic functions and the common use of powerful computers 
make these alternatives less attractive now. 

Summary 

This section outlined the basic properties of the Jacobian elliptic functions and 
gave the necessary conditions for an equiripple rational function to be defined in 
terms of them. This rational function was then used to construct a filter transfer 
function with equiripple properties. Formulas were derived to calculate the pole 
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and zero locations for the filter transfer functions and to relate design 
specifications to the functions. These formulas require the evaluation of elliptic 
functions and are implemented in Program 9. 

7.2.8 Elliptic Function Filter Design Procedures 

The equiripple rational functioil G(w) is used to describe an optimal frequency- 
response function F(jw) and to design the corresponding filter. The squared 
magnitude frequency-response function from (7.58) is 

with G(w) defined by (7.68) and (7.76), and E a parameter that controls the pass- 
band ripple. The plot of this function for N = 5 illustrates the relation to the 
various specification parameters. Figure 7.18 shows that the pass-band ripple is 
measured by dl, the stop-band ripple by 62, and the normalized transition band 
by w,. The previous section showed in (7.72) that 

FIGURE 7.18. Elliptic-function filter frequency response. 
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which means that the width of the transition band determines k.  Remember that 
in this developement we have assumed a pass-band edge normalized to unity. 
For the unnormalized case the pass-band edge is w,, and the stop-band edge 
becomes 

The stop-band performance is described in terms of the ripple 8, normalized to a 
maximum pass-band response of unity or in terms of the attenuation b in the 
stop band expressed in positive dB, if we assume a maximum pass-band 
response of zero dB. The stop-band ripple and attenuation are determined from 
(7.86) and Fig. 7.18 to be 

Rearranging gives k ,  in terms of the stop-band ripple or attenuation 

The order N of the filter depends on k  and k , ,  as shown in (7.71). Equations 
(7.87), (7.89), and (7.71) determine the relation of the frequency-response 
specifications and the elliptic function parameters. The location of the transfer 
function poles and zeros must then be determined. 

Because of the required relationships of (7.71) and because the order N must 
be an integer, the pass-band ripple, stop-band ripple, and transition band 
cannot be independently set. Several straightforward procedures can be used 
that will a1w:ly- ~ieet two of the specifications and exceed the third. 

The first desig-I step is generally the determination of the order N from the 
desired pass-b; nd ripple 8,, the stop-band ripple a,, and the transition band 
controlled by a),. The following formulas determine the moduli k  and k ,  from 
the pass-band ripple 6 ,  or its dB equivalent a and the stop-band ripple 6 ,  or its 
dB attenuation equivalent b: 
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The order N is the smallest integer satisfying 

KK; 
N 2 ---- . 

K'K I 

This integer order N will not, in general, exactly satisfy (7.71)-that is, it will not 
satisfy (7.93) with equality. Either k or k, must to recalculated to satisfy (7.71) 
and (7.93). The various possibilities for this are developed here. 

Methods for Meeting Specifications 

A.  Fixed-Order, Pass-Band Ripple, and Eonsition Band 
Given N from (7.93) and the specifications dl, o,, and w,, we find the parameters 
E and k from (7.90) and (7.92). From k the complete elliptic integrals K and K' 
are ~ a l c u l a t e d . ~ ~  From (7.71) the ratio K/K' determines the ratio K;/K,. Using 
numerical methods from references 21 and 23, we calculate k,, which gives the 
desired dl,  w,, and w, and minimizes the stop-band ripple 6, (or maximizes the 
stop-band attenuation b). 

Using these parameters, we calculate the zeros from (7.79) and the poles from 
(7.84). Note that the zero locations depend not on E or k, but only on N and o,. 
This dependence makes the tradeoff between stop band and pass band occur in 
(7.91) and only affects the calculation of v,  in (7.82). 

This approach, which minimizes the stop-band ripple, is used in the IIR filter 
design program in the appendix. 

B. Fixed-Order, Stop-Band Rejection, and Tvansition Band 
Given N from (7.93) and the specifications 6,, (I),, and w,, we find the parameter 
k from (7.92). From k the complete elliptic integrals K and K' are ~ a l c u l a t e d ~ ~ .  
From (7.71) the ratio K/K' determines the ratio K;/K,. Using numerical 
methods from references 21 and 23, we calculate k,. From k, and 6,, E and 6, are 
found from 

and 

This set of parameters gives the desired a,, w,, and stop-band ripple and 
minimizes the pass-band ripple. The zero and pole locations are found as in A. 

C.  Fixed-Order, Stop-Band, and Pass-Band Ripple 
Given N from (7.93) and the specifications 6,, 6,, and either w, or w,, we find the 



198 Design of  Infinite Impulse-Response Filters 

parameters E and k ,  from (7.90) and (7.91). From k ,  the complete elliptic 
integrals K ,  and K', are c a l c ~ l a t e d ~ ~ .  From (7.71) the ratio K , / K ' ,  determines 
the ratio K r / K .  Using numerical methods from references 21 and 23, we calculate 
k  which gives the desired pass-band and stop-band ripple and minimizes the 

q 
transition band width. The pole and zero locations are found as before. 

I 
D. An Approximation 
After the order N is found from (7.931, in many filter design programs the design 
proceeds with the original E,  k, and k , ,  even though they do not satisfy (7.71). 
The resulting design has the desired transition band, but pass-band and stop- 
band ripple are smaller than specified. This procedure avoids calculating the 
modulus k or k ,  from a ratio of complete elliptic integrals, which was necessary 
in all three cases before, but produces results that are difficult to predict exactly. 

Example 7.4. Design ofa Third-Order Elliptic Function Low-Pass Filter 
A low-pass elliptic function filter is desired with a maximum pass-band ripple 

of 6, = 0.1 or a = 0.91515 dB, a maximum stop-band ripple of 6, = 0.1 or 
b = 20dB rejection, and a normalized stop-band edge of o, = 1.3 rad/s. The 
first step is to determine the order of the filter. 

From o, we calculate the modulus k  and then, using the relations in (7.92), the 
complementary modulus. Special numerical algorithms illustrated in Program 9 
are then used to find the complete elliptic. integrals K  and K'." 

From d l ,  we calculate E ,  using (7.90), and from E and d 2 ,  we calculate k ,  from 
(7.9 1). We then determine k ; ,  K , ,  and K',: 

E = 0.4843221 as for the Chebyshev example, 
k ,  = 0.0486762, k', = 0.9988 146, 

K ,  = 1.571727, K ;  = 4.4108715. 

The order is obtained from (7.71) by calculating 

K K ;  -- - 3.0541, 
K'K , 

which is close enough to 3 to set N = 3. Rather than recalculate k  and k , ,  we use 
the already calculated values, as discussed in design method D. We find the zeros 
from (7.79), using only N and k  determined earlier. 
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Finding the pole locations requires calculating v0 from (7.82), which is 
somewhat complicated. It is carried out with the algorithms in Program 9. 

Using the values of vO, k, and N, we calculate the elliptic functions in (7.85): 

sn' = .557986, cn' = 0.829850, dn' = 0.934281, 

which for the single, real pole corresponding to i = 0 in (7.84) gives 

For the complex-conjugate pair of poles corresponding to i = 2, the other 
elliptic functions in (7.85) are 

which gives, from (7.84), 

for the poles. The complete transfer function is 

The frequency response of this filter is in Fig. 7.19, and the locations of the poles 
and zeros are in Fig. 7.20. This design should be compared to the Chebyshev and 
inverse Chebyshev designs. 

7.2.9 Optimality of the Four Classical Filter Designs 

It is important in filter design to choose the appropriate type. Since the filters are 
optimal in all cases, it is necessary to understand in what sense they are optimal. 

The classical Butterworth filter is optimal in the sense that it is the best 
Taylor series approximation to the ideal low-pass filter magnitude at both 
o = 0 and o = co. 

The Chebyshev filter gives the smallest maximum magnitude error over the 
entire pass band of any filter that is also a Taylor series approximation at 
o = co to the ideal magnitude characteristic. 

The inverse Chebyshev filter is a Taylor series approximation to the ideal 
magnitude response at o = 0 and minimizes the maximum error in the 
approximation to zero over the stop band. Or we can say it maximizes the 
minimum rejection of the filter over the stop band. 
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Pass band Transition stopband 
band 

FIGURE 7.19. Example elliptic function filter frequency response. 

I s plane 

FIGURE 7.20. Pole and zero locations in the s plane for the example elliptic function filter. 

The elliptic function filter (Cauer filter) considers the four parameters of the 
filter: the pass-band ripple, the transition band width, the stop-band ripple, and 
the order of the filter. For given values of any three of the four, the fourth is 
minimized. 

Remember that all four of these filter designs are magnitude approximations 
and do not address the phase frequency response or the time-domain character- 
istics. For most designs the Butterworth filter has the smoothest phase curve, 
followed by the inverse Chebyshev filter, Chebyshev filter, and elliptic function 
filter. 

Recall that in addition to the four filters described in this section, the more 
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general Taylor series method described in (7.8) allows arbitrary zero locations to 
be specified but retains the optimal character at o = 0. A design similar to this 
can be obtained by replacing o by l /o ,  which allows setting IF(o)I2 equal to 
unity at arbitrary frequencies in the pass band and having a Taylor series 
approximation to zero at o = co. Similar modifications of the Chebyshev filters 
are covered in references 24 and 25. 

These basic normalized low-pass filters can have the pass-band edge moved 
from unity to any desired value by a simple change of frequency variable: k o  
replace with o .  They can be converted to high-pass, bandpass, or band-rejection 
filters by various changes, such as replacing o by k/o or by a o  + blo. In all of 
these cases the optimality is maintained, because the basic low-pass approxi- 
mation is to a piecewise constant ideal. An approximation to a nonpiecewise 
constant ideal, such as a differentiator, may not be optimal after a frequency 
change of variables. 

In some cases, especially where time-domain characteristics are important, 
ripples in the frequency response cause irregularities, such as echoes in the time 
response. For that reason the Butterworth and Chebyshev I1 filters are more 
desirable than their frequency response along might indicate. A fifth approxi- 
mation has been developedz0 that is similar to the Butterworth. It requires qot a 
Taylor series approximation at o = 0 but only that the response monotonically 
decrease in the pass band, thus giving a narrower transition region than the 
Butterworth but without the ripples of the Chebyshev. 

7.2.10 Frequency Transformations 

In addition to the low-pass frequency response, other basic ideal responses are 
often needed in practice. The ideal high-pass filter rejects signals with freq- 
uencies below a certain value and passes those with frequencies above that 
value. The ideal bandpass filter passes only a band of frequencies, and the ideal 
band-rejection filter completely rejects a band of frequencies. These ideal 
frequency responses are illustrated in Fig. 7.21. 

This section presents a method for designing the three new filters by using a 
frequency transformation on the basic low-pass design. When used on the four 
approximations covered in Sections 7.2.1 through 7.2.8, they preserve optim- 
ality. This procedure is used in the FREQXFM( ) subroutine of Program 9. 

The High-Pass Filter 
The frequency response illustrated in Fig. 7.21b can be obtained from that in 
7 . 2 1 ~  by replacing the complex frequency variable s in the transfer function by 
11s. This change of variable maps zero frequency to infinity, maps unity into 
unity, and maps infinity to zero. It turns the complex s plane inside out and 
leaves the unit circle alone. 

In the design procedure the desired band edge w, for the high-pass filter is 
mapped by l/oo to give the band edge for the prototype low-pass filter. This 
low-pass filter is next designed by one of the optimal procedures already covered 
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( C) ( d )  

FIGURE 7.21. The four basic ideal frequency responses. (a) Ideal low pass; (b) ideal high pass; (c) 
ideal bandpass; (d) ideal band rejection. 

and then converted to a high-pass transfer function by replacing s by 11s. If an 
elliptic function filter approximation is used, both the pass-band edge o, and the 
stop-band edge o, are transformed. Because most optimal low-pass design 
procedures give the designed transfer function in factored form from explicit 
formulas for the poles and zeros, the transformation can be performed on each 
pole and zero to give the high-pass transfer function in factored form. 

The Bandpass Filter 
To convert the low-pass filter of Fig. 7 . 2 1 ~  into that of 7.21c, we need a more 
complicated frequency transformation. To reduce confusion, we denote the 
complex frequency variable for the prototype analog filter transfer function by p 
and that for the transformed analog filter by s. The transformation is given by 

This change of variables doubles the order of the filter, maps the origin of the s 
plane to +jo,, and maps + co to 0 and co. The entire w axis of the prototype 
response is mapped between 0 and + co on the transformed responses. It is also 
mapped onto the left-half-axis between - co and 0. See Fig. 7.22. 

For the transformation to give -ap = (o: - o;)/02 and 
up = (0: - 06)/03,  the "center" frequency o, must be 

However, because -a, = (w: - o;)o, and o, = (oi - 0,2)/04, the center 
frequency must also be 
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FIGURE 7.22. Low-pass to bandpass frequency transformation. 

This means that only three of the four band-edge frequencies (w,, w,, w,, and 
w,) can be independently specified. Normally, 0.1, is determined by 0.1, and w,, 
which then specify the prototype pass-band edge by 

Using the same wO, we set the stop-band edge by either w, or a,, whichever 
gives the smaller w,. 

The finally designed bandpass filter will meet both pass-band edges and one 
transition bandwidth, but the other will be narrower than originally specified. 
That is not a problem with the Butterworth or either of the Chebyshev 
approximations because they have either pass-band edges or stop-band edges. 
The elliptic function has both. 

After we calculate the band edges for the prototype low-pass filter wp and/or 
a,, we design the filter by one of the optimal approximation methods discussed 
in this section or by any other means. Because most of these methods give the 
pole and zero locations directly, they can be individually transformed to give the 
bandpass filter transfer function in factored form. It is accomplished by solving 
s2 - ps + w; from the original transformation to give 
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(a) Narrow-band filter ( b )  Wide-band filter 

FIGURE 7.23. Pole and zero locations for a bandpass filter. (a) Narrow-band filter; ( h )  Wide-band 
filter. 

for the root locations. This equation gives two transformed roots for each 
prototype root, which doubles the order as expected. 

Examples of two third-order. bandpass, Chebyshev filter pole and zero 
locations (after converting to a digital filter) on the z plane are shown in Fig. 
7.23. The roots that result from transforming the real pole of an odd-order 
prototype cause some complication in programming this procedure. Program 9 
should be studied to understand how this is carried out. 

The Band-Reject Filter 
To design a filter that will reject a band of frequencies, we use a frequency 
transformation of the form 

on the prototype low-pass filter. This transforms the origin of the p plane into 
both the origin and infinity of the s plane. It maps infinity in the p plane into jo, 
in the s plane. See Fig. 7.24. 

FIGURE 7.24. Low-Pass to band-rejection frequency transformation. 
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Similar to the bandpass case, the transformation must give 
-cop = 04/(o; - w:) and o, = o,(o; - o:). A similar relation of o, to w, and 
w, requires that the center frequency o, must be 

As before, only three of the four band-edge frequencies can be independently 
specified. Normally, o, is determined by o, and o,, which then specify the 
prototype pass-band edge by 

Using the same w,, we set the stop-band edge by either w, or w3, whichever 
gives the smaller w,. 

The finally designed bandpass filter will meet both pass-band edges and one 
transition bandwidth, but the other will be narrower than originally specified. 
This occurs not with the Butterworth or either Chebyshev approximation but 
only with the elliptic function. 

After we calculate the band edges for the prototype low-pass filter w, and/or 
o,, we design the filter. The poles and zeros of this filter are individually 
transformed to give the band-rejection filter transfer function in factored form. It 
is carried out by solving s2 - (l/p)s + w; to give for the root locations 

Examples of two third-order band-reject Chebyshev filter pole and zero 
locations (after converting to a digital filter) on the s plane are shown in Fig. 
7.25. 

A more complicated set of transformations could be developed by using a 
general map of s = f (s) with a higher order. Several pass bands or stop bands 
could be specified, but the calculations become fairly complicated. 

Although this method of transformation is a powerful and simple way for 
designing bandpass and band-reject filters, it does impose certain restrictions. A 
Chebyshev bandpass filter will be equiripple in the pass band and maximally flat 
at both zero and infinity, but the transformation forces the degree of flatness at 
zero and infinity to be equal. The elliptic function bandpass filter will have the 
same number of ripples in both stop bands even if they are of very different 
widths. These restrictions are usually considered mild when compared with the 
complexity of alternative design methodr.. 
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( a )  Narrow-band filter ( b )  Wide-band filter 

FIGURE 7.25. Pole and zero locations for a band rejection filter. (a) Narrow-band filter; (b) wide- 
band filter. 

7.3. CONVERSION OF ANALOG-TO-DIGITAL 
TRANSFER FUNCTIONS 

For mathematical convenience the four classical IIR filter transfer functions 
were developed in Section 7.2 in terms of the Laplace transform rather than the z 
transform. The prototype Laplace transform transfer functions are descriptions 
of analog filters. In this section they are converted to z transform transfer 
functions for implementation as IIR digital filters. 

Of the several methods described over the history of digital filters for 
converting analog systems to digital systems, two have proven to be useful for 
most applications. The first is the impulse-invariant method, which gives a digital 
filter with an impulse response exactly equal to samples of the prototype analog 
filter. The second method uses a frequency mapping to convert the analog filter 
to a digital filter. It has the desirable property of preserving the optimality of the 
four classical approximations developed in the last section. This section 
develops the theory and design formulas to implement both of these conversion 
approaches. 

7.3.1 The Impulse-Invariant Method 

Although the transfer functions in Section 7.2 were designed with criteria in the 
frequency domain, the impulse-invariant method converts them into digital 
transfer functions by a time-domain constraint.'- The digital filter designed by 
the impulse-invariant method is required to have an impulse response exactly 
equal to equally spaced samples of the impulse response of the prototype analog 
filter. If the analog filter has a transfer function F(s) with an impulse response 
f ( t ) ,  the impulse response of the digital filter h(n) is required to match the samples 
off ( t ) .  For samples at intervals of T seconds the impulse response is 
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The transfer function of the digital filter is the z transform of the impulse 
response of the filter, 

The transfer function of the prototype analog filter is always a rational function, 

where B(s)  is the numerator polynomial with roots that are the zeros of F(s),  and 
A(s)  is the denominator with roots that are the poles of F(s). If F(s)  is expanded in 
terms of partial fractions, it can be written as 

The impulse response of this filter is the inverse Laplace transform of (7.103), 
which is 

Sampling this impulse response every T seconds gives 

The basic requirement of (7.102) gives 

which is clearly a rational function of z and is the transfer function of the digital 
filter, which has samples of the prototype analog filter as its impulse response. 

This method has its requirements set in the time domain, but the frequency 
response is important. In most cases the prototype analog filter is one of the 
classical types from Section 7.2, which is optimal in the frequency domain. If the 
frequency response of the analog filter is denoted by F ( j w )  and the frequency 
response of the digital filter designed by the impulse-invariant method is H(w), it 
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can be shown, in a development similar to that used for the sampling theorem, 
that 

The frequency response of the digital filter is a periodically repeated version of 
the frequency response of the analog filter. This produces an overlapping of the 
analog response. Thus optimality is not preserved in the same sense in which the 
analog prototype was optimal. It is a similar phenomenon to the aliasing that 
occurs when sampling a continuous-time signal to obtain a digital signal in A/D 
conversion. If F(jw) is an analog low-pass filter that goes to zero as o goes to 
infinity, the effects of the folding can be made small by high sampling rates (small 
T). 

The impulse-invariant design method can be summarized in the following 
steps: 

1. Design a prototype analog filter with transfer function F(jo). 
2. Make a partial fraction expansion of F(,jw) to obtain the N values for K i  

and si for (7.100). 
3. Form the digital transfer function H(z) from (7.104) to give the desired 

design. 

The characteristics of the designed filter are the following: 

1. It has N poles, the same as the analog filter. 
2. It is stable if the analog filter was stable. We see this from the change of 

variables in the denominator of (6.70), which maps the left-half of the s 
plane inside the unit circle in the z plane. 

3. The frequency response is a folded version of the analog filter, and the 
optimal properties of the analog filter are not preserved. 

4. The cascade of two impulse-invariant designed filters is not impulse- 
invariant with the cascade of the two analog prototypes. In other words, 
the filter must be designed in one step. 

This method is sometimes used to design digital filters, but because the 
relation between the analog and digital systems is specified in the time domain, it 
is more useful in designing a digital simulation of an analog system. Unfor- 
tunately, tht: properties of this class of filters depend on the input. If a filter is 
designed so that its impulse response is the sampled impulse response of the 
analog filter, its step response will not be the sampled step response of the analog 
filter. 

A step-invariant filter can be designed by first multiplying the analog filter 
transfer function F(s) by l/s, which is the Laplace transform of a step function. 
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(a)  The Butterworth Lowpass Prototype Analog Filter 

( b )  The Digital Filter Designed by the Impulse Invariant Method 

FIGURE 7.26. Impulse-invariant design of a Butterworth filter. (a) Butterw-rth low-pass 
prototype analog filter; (b) digital filter designed by the impulse-invariant method. 

This product is then expanded in partial fractions just as F(s) was in (7.100), and 
the same substitution is made as in (7.104), giving a z transform. After the z 

transform of a step is removed, the digital filter has the step-invariant property. 
This idea can be extended to other input functions, but the impulse-invariant 
version is the most common. 

Another modification to the impulse-invariant method is known as the 
matched z transform, covered in reference 1, but it is less useful. 

An example of a Butterworth low-pass filter used to design a digital filter by 
the impulse-invariant method is shown in Fig. 7.26. Note that the frequency 
response does not go to zero at the highest frequency o = n. We can make it as 
small as we like by increasing the sampling rate, but this is more expensive to 
implement. Because the frequency response of the prototype analog filter for an 
inverse Chebyshev or elliptic function filter does not necessarily go to zero as w 
goes to infinity, the effects of folding on the digital frequency response are poor. 
No amount of sampling rate increase will change that. The same problem exists 
for a high-pass filter. Therefore care must be exercised in using the impulse- 
invariant design method. 

7.3.2 The Bilinear Transformation 

A second method for converting an analog prototype filter into a desired digital 
filter is the bilinear transformation. This method is entirely a frequency-domain 
method, and, as a result, some of the optimal properties of the analog filter are 
preserved. As was the case with the impulse-invariant method, the time interval 
is not normalized to unity but is explicitly denoted by the sampling interval T 
with units of seconds. The bilinear transformation is a change of variables (a 
mapping) that is linear in the numerator and the The usual 



210 Design of Infinite Impulse-Response Filters 

form is 

The z transform transfer function of the digital filter H(z) is obtained from the 
Laplace transform transfer function F(s) of the prototype filter by substituting 
for s the bilinear form of (7.106). 

This operation can be reversed by solving (7.106) for z and substituting this into 
H(z) to obtain F(s). This reverse operation is also a bilinear transformation of the 
form 

To consider the frequency response, we evaluate the Laplace variable s on the 
imaginary axis and the z transform variable z on the unit circle. We set 

s = ju and z = e jWT,  (7.109) 

which gives the relation of the analog frequency variable u to the digital 
frequency variable w, from (7.109) and (7.106), as 

The bilinear transform maps the infinite imaginary axis in the s plane onto 
the unit circle in the z plane. It maps the infinite interval of - co < u < co of the 
analog frequency axis onto the finite interval - n/2 < w < 7112 of the digital 
frequency axis. See Figs. 7.27 and 7.28. There is no folding or aliasing of the 
prototype frequency response, but there is a compression of the frequency axis 
that becomes extreme at high frequencies. This compression is shown in Fig. 
7.28 from the relation (7.1 10). Near zero frequency, the relation of u and w is 
essentially linear. The compression increases as the digital frequency w nears 
n/2. This nonlinear compression is called frequency warping. The conversion of 
F(s) to H(z) with the bilinear transformation does not change the values of the 
frequency response, but it changes the frequencies where the values occur. 

In the design of a digital filter the effects of the frequency warping must be 
taken into account. The prototype filter frequency scale must be prewarped so 
that after the bilinear transform the critical frequencies are in the correct plac 
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FIGURE 7.28. Relation of analog and digital frequencies 
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This prewarping or scaling of the prototype frequency scale is done by replacing 
s with Ks. Because the bilinear transform is also a change of variables, both can 
be performed in one step. 

If the critical frequency for the prototype filter is u, and the desired critical 
frequency for the digital filter is w, ,  the two frequency responses are related by 

F(ju,) = H(w,)  = F*. (7.1 1 1 )  

The prewarping scaling is given by 

2 
uo = - tan (y). 

T 

Combining the prewarping scale and the bilinear transformation gives 

2 K 
uo = - tan (F). 

T 

Solving for K and combining with (7.106) give 

All of the optimal filters developed in Section 7.2 and most other prototype 
filters are designed with a normalized critical frequency u ,  = 1 .  Recall that w ,  is 
in radians per second. Most specifications are given in terms of frequency f in 
Hertz, which is related to w or u by 

Care must be exercised with the elliptic function filter when there are two critical 
frequencies that determine the transition region. Both frequencies must be 
prewarped. 

The characteristic of the bilinear transform are the following: 

1. The order of the digital filter is the same as the prototype filter. 
2. The left-half of the s plane is mapped into the unit circle on the z plane, 

which means stability is preserved. 
3. Optimal approximations to piecewise constant prototype filters, such as 

the four cases in Section 7.2, transform into optimal digital filters. 
4. The cascade of sections designed by the bilinear transform is the same as 

that obtained by transforming the total system. 
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The bilinear transform is probably the most frequently used method for 
converting a prototype Laplace transform transfer function into a digital 
transfer function. It is the one used in most popular filter design programs,10-12 
because optimality is preserved. The maximally flat prototype is transformed 
into a maximally flat digital filter. This property only holds for approximations 
to piecewise constant, ideal frequency responses, because the frequency warping 
does not change the shape of a constant. If the prototype is an optimal 
approximation to a differentiator or to a linear-phase characteristic, the bilinear 
transform will destroy the optimality. Those approximations have to be made 
directly in the digital frequency domain. 

Example 7.5. Design with The Bilinear Transformation 
To illustrate the bilinear transformation, we convert the third-order Butter- 

worth low-pass filter designed in Example 7.1 into a digital filter. The prototype 
filter transfer function is 

The prototype analog filter has a pass-band edge at uo = 1. We assume a data 
rate of 1000 samples/s, corresponding to T = 0.001 seconds. If the desired digital 
passband edge is fo = 200 Hz, then oo = (27~)(200) rad/s, and the total pre- 
warped bilinear transformation from (7.11 3) is 

The digital transfer functionin (7.1 14) becomes 

Note the locations of the poles and zeros in the z plane. Zeros at infinity in the s 
plane always map into the z = - 1 point. The examples in Figs. 7.1 and 7.2 
illustrate a third-order elliptic function filter designed with the bilinear 
transform. 

7.3.3 Frequency Transforma ions r 
For the design of high-pass, bandpbss, and band-rejection filters, a particularly 
powerful combination consists of using the frequency transformations described 
in Section 7.2.10 together with the bilinear transformation. When using this 
combination, be careful to scale the specifications properly. This scaling 
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procedure is illustrated by considering the steps in the design of a bandpass 
filter: 

1. First, the lower and upper digital band-edge frequencies are specified as o, 
and o, or a,, o,, a,, and o, if an elliptic function approximation is used. 

2. These frequencies are prewarped. Equation (7.1 12) is used to give the band 
edges of the prototype bandpass analog filter. 

3. These frequencies are converted into a single band edge o, or o, for the 
Butterworth and Chebyshev approximations and into o, and w, for the 
elliptic function approximation of the prototype low-pass filter by using 
(7.97) and (7.98). 

4. The low-pass filter is designed for this o, and/or o, by using one of the 
four approximations in Sections 7.2.1 through 7.2.8 or some other method. 

5. This low-pass analog filter is converted into a bandpass analog filter with 
the frequency transformation (7.99). 

6. The bandpass analog filter is then transformed into the desired bandpass 
digital filter with the bilinear transformation (7.106). 

This procedure is used in the design Program 9 in the appendix. 
In the design of a bandpass elliptic function filter, four frequencies must be 

specified: the lower stop-band edge, the lower pass-band edge, the upper pass- 
band edge, and the upper stop-band edge. All four must be prewarped to the 
equivalent analog values. A problem occurs when the two transition bands of 
the bandpass filter are converted into the single transition band of the low-pass 
prototype filter. In general, they will be inconsistent; therefore, the narrower of 
the two transition bands should be used to specify the low-pass filter. The same 
problem occurs in designing a band-rejection elliptic function filter. Program 9 
should be studied to understand how this is carried out. 

An alternative to the process of converting a low-pass analog filter into a 
bandpass analog filter into a digital filter is to first convert the prototype low- 
pass analog filter into a low-pass digital filter and then to make the conversion 
into a bandpass filter. If the prototype digital filter transfer function is H,(z) and 
the frequency transformation is f ( z ) ,  the desired transformed digital filter is 
described by 

Since the frequency responses of both H(z) and H,(z) are obtained by evaluating 
them on the unit circle in the z plane, f ( z )  should map the unit circle onto the 
unit circle (lzl = 1 If (z)l = 1). Both H(z) and H,(z) should be stable; therefore, 
f ( z )  should map the interior of the unit circle into the interior of the unit circle 
((zl < 1 =. I f(z)l < 1). If f ( z )  were viewed as a filter, it would be an all-pass filter 

-7 



7.3 Conversion of Analog-to-Digital Transfer Functions 21 5 

with a unity magnitude frequency response of the form 

The prototype digital low-pass filter is usually designed with band edges at 
+n/2. Determining the frequency transformation then becomes the problem of 
solving the n + 1 equations 

for the unknown a, where i = 0, 1 ,2 , .  . . , n and the wi are the band edges of the 
desired transformed frequency response put in ascending order. The resulting 
simultaneous equations have a special structure that allow a recursive solution. 
Details of this approach can be found in reference 4. 

This approach is extremely general and allows multiple pass bands of 
arbitrary width. If elliptic function approximations are used, only one of the 
transition bandwidths can be independently specified. If more than one pass 
band or band rejection is desired, f ( z )  will be higher than second order, and 
therefore the transformed transfer function H( f ( z ) )  will have to be factored by a 
root finder. 

To illustrate the results of using transform methods to design filters, we give 
three examples, which are designed with Program 9. 

Example 7.6. Design of a Chebyshev High-Pass Filter 
The specifications are given for a high-pass Chebyshev frequency response 

with a pass-band edge at fb = 0.3 Hz with a sampling rate of 1 sample/s. The 
order is set at N = 5 and the pass-band ripple at  0.91515dB. The transfer 
function 

The frequency-response plot is given in Fig. 7.29. 

Example 7.7. Design of an Elliptic Function Batlrlpass Filter 
This filter requires a bandpass frequency response with an elliptic function 

approximation. The maximum pass-band ripple is 1 dB, the minimum stop- 
band attenuation is 30dB, the lower stop-band edge f l  = 0.19 Hz, the lower 
pass-band edge f2  = 0.2 Hz, the upper pass-band edge f ,  = 0.3 Hz, and the 
upper stop-band edge f ,  = 0.31 Hz, with a sampling rate of 1 sample/s. The 
design program calculated a required prototype order of N = 5 and, therefore, a 
total order of 10. Figure 7.30 shows the frequency-response plot. 



FIGURE 7.29. Fifth-order Chebyshev highpass filter. 

FIGURE 7.30. Tenth-order elliptic function bandpass filter. 
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FIGURE 7.31. Twenty second-order inverse Chebyshev band-rejection filter. 

Example 7.8. Design of an Inverse Chebyshev Band-Rejection Filter 
The specifications are given for a band-rejection inverse Chebyshev frequency 

response with band edges at f, = 0.1 and 0.2 Hz with a sampling rate of 1 
sample/s. The prototype order is set at N = 11, and the minimum stop-band 
attenuation at 30 dB. The frequency-response plot is given in Fig. 7.31. 

Summary 

This section described the two most popular and useful methods for transform- 
ing a prototype analog filter into a digital filter. The analog frequency variable is 
used because literature on analog filter design exists, but, more imporantly, 
many approximation theories are more straightforward in terms of the Laplace 
transform variable than the z transform variable. The impulse-invariant method 
is particularly valuable when time-domain characteristics are important. The 
bilinear transform method is the most common when frequency-domain 
performance is the main interest. The bilinear transformation warps the 
frequency scale; therefore, the digital band edges must be prewarped to obtain 
the necessary band edges for the analog filter design. Formulas that transform 
the analog prototype filters into the desired digital filters and for prewarping 
specifications were derived. 

The use of frequency transformations to convert low-pass filters into high- 
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pass, bandpass, and band-rejection filters was discussed as a particularly useful 
combination with the bilinear transformation. These transformations are 
implemented in Program 9 and design examples from this program were shown. 

In some rases no analytic results are possible, or the desired frequency 
response is not piecewise constant. Transformation methods are then not 
appropriate. Direct methods for these cases are developed in the next section. 

7.4. DIRECT FREQUENCY-DOMAIN IIR 
FILTER DESIGN METHODS 

The preceding design methods have been based on designing an analog 
prototype filter and then converting it to a digital filter. This approach is 
appropriate for the class of approximations where analytic solutions are 
possible; it is not appropriate for many others. The rest of this chapter develops 
methods that directly design the desired digital filter. Most approaches are 
extensions of methods used for FIR filters, but they are more complicated for the 
IIR case where rational approximation rather than polynomial approximation 
is being performed. 

This section develops a frequency-sampling design method such that the 
frequency response of the IIR filter will pass through the given samples of a 
desired response. Since an IIR filter cannot have linear phase, the sampled 
response must contain both magnitude and phase. The extension of the 
frequency-sampling method to an LS error approximation is not as simple as for 
the FIR filter. The method given here uses a criterion based on the equation 
error rather than on the more common error between the actual and desired 
frequency responses. Nevertheless, it is a useful noniterative design method. 
Finally, a general discussion of iterative design methods for LS frequency- 
response error is given. 

7.4.1 Frequency-Sampling Design of IIR Filters 

The method for calculating samples of the frequency response of an IIR filter 
presented in Section 6.2 can be reversed to design a filter in much the same way 
as it was for the FIR filter in Section 3.1. The z transform transfer function for an 
IIR filter is 

The frequency response of the filter is given by setting z = e-j", as shown in 
Section 6.2. Using the notation 
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we choose equally spaced samples of the frequency response so that the number 
of samples is equal to the number of unknown coefficients in (7.116). These 
L + 1 = M + N  + 1 samples of this frequency response are given by 

and can be calculated from the length-(L + 1) DFTs of the numerator and 
denominator as given in (6.6). 

where the indicated division is term by term for each value of k. Multiplication 
of both sides of (7.1 19) by A, gives 

If the length-(L + 1) inverse DFT of H ,  is denoted by the length-(L + 1) 
sequence h,, equation (7.120) becomes cyclic convolution, which can be 
expressed in matrix form by 

Note that the h, in (7.121) are not the impulse-response values of the filter as in 
(6.2). A more compact matrix notation of (7.121) is 

where H is (L + 1) by (L + I), b is length (M + I), and a is length ( N  + 1). 
Because the lower L - N  terms of the right-hand vector of(7.121) are zero, the H 
matrix can be reduced by deleting the rightmost L - N  columns to give Ho, 
which transforms (7.122) to 
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Because the first element of a is 1 ,  it is partitioned to remove the unity term, and 
the remaining length-n vector is denoted a*. The simultaneous equations 
represented by (7.123) are uncoupled by further partitioning of the H  matrix, as 
shown in 

where H ,  is ( M  + 1 )  by ( N  + l ) ,  h, is length ( L  - M), and H ,  is ( L  - M )  by N .  
The lower L - M equations are written 

which must be solved for a*. The upper M + 1 equations of (7.124) are written 

which allows b to be calculated. 
If L = N + M ,  H ,  is square. If H ,  is nonsingular, (7.125) can be solved 

exactly for the denominator coefficients in a*, which are augmented by the unity 
term to give a. From (7.126) we find the numerator coefficients in b. 

Note that any order numerator and denominator can be prescribed. If the 
filter is an FIR filter, a is unity and a* does not exist. Under these conditions 
(7.126) states that b, = h,, which is one of the cases of FIR frequency sampling 
covered in Section 3.1. Also note that there is no control over the stability of the 
designed filter for this method. 

Summary 

This section developed and analyzed an interpolation design method. The 
frequency-domain specifications were converted to the time domain by the 
DFT. A matrix partitioning allowed the solution for the numerator coefficients 
to be uncoupled from the solution of the denominator coefficients. The DFT 
prevents the possibility of unequally spaced frequency samples, which was 
possible for FIR filter design. C 

The frequency-sampling design of IIR filters is somewhat more complicated 
than for FIR filters because of the requirement that H ,  be nonsingular. As for 
the FIR filter, the samples of the desired frequency response must satisfy the 
conditions to ensure that h, are real. The power of this method is its ability to 
interpolate arbitrary magnitude and phase specifications. In contrast to most 
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direct IIR design methods, this method does not require any iterative optimizat- 
ion with the accompanying convergence problems. 

As with the FIR version, this design approach is an interpolation method 
rather than an approximation method, so it sometimes gives poor performance 
between the interpolation points. This usually happens when the desired 
frequency-response samples are not consistent with what an IIR filter can 
achieve. One solution to this problem is the same as for the FIR case in Section 
3.2: the use of more frequency samples than the number of filter coefficients, and 
the definition of an approximation error function that can be minimized. No 
restriction will guarantee stable filters. If the frequency-response samples are 
consistent with an unstable filter, that is what will be designed. 

7.4.2 Discrete Least Squared Equation-Error 
IIR Filter Design 

To obtain better practical filter designs, we extend the interpolation scheme of 
the previous section to give an approximation design r n e t h ~ d . ~ ~ , ~ '  Note that the 
method developed here minimizes an equation-error measure and not the usual 
frequency-response error measure. 

The number of frequency samples specified, L + 1, will be made larger than 
the number of filter coefficients, M + N + 1. This means that Hz is rectangular, 
and therefore (7.125) cannot, in general, be satisfied. To formulate an approxi- 
mation problem, we introduce a length-(L + 1) error vector e in (7.121) and 
(7.123) to give 

Equation (7.125) becomes 

where now H z  is rectangular with L - M > N. Using the same methods as in 
Section 3.2 to derive (3.19), we minimize the error e in a LS error sense by solving 
the normal equations 

If the equations are not singular, the solution is 

a* = - [ H ,  T~2]-1HThl .  

The numerator coefficients are found by the same techniques as in (7.126): 
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which makes the upper M + 1 terms in e zero and the total squared error a 
minimum. 

As noted in Section 3.2 on LS error design of FIR filters, (7.129) is often 
numerically ill conditioned, and (7.130) should not be used to solve for a*. 
Special algorithms, such as those contained in LINPACK,' should be em- 
ployed; they were used in the programs in the appendix. 

The error e defined in (7.127) can better be understood by considering the 
frequency-domain formulation. Taking the DFT of (7.127) gives 

E is the error produced by trying to satisfy (7.120) when the equations are 
overspecified. Equation (7.13 1) can be reformulated in terms of 8, the difference 
between the frequency response samples of the designed filter and the desired 
response samples, by dividing (7.131) by A,: 

E is the error in the solution of the approximation problem, and E is the error in 
the equations defining the problem. The usual statement of a frequency-domain 
approximation problem is in terms of minimizing some measure of 8, but that 
results in solving nonlinear equations. The design procedure developed in this 
section minimizes the squared error E; thus only linear equations need to be 
solved. There is an important relation between these problems. Equation (7.132) 
shows that minimizing E is the same as minimizing E weighted by A. However, 
A is unknown until after the problem is solved. 

Although this method is posed as a frequency-domain design method, the 
methods of solution for both the interpolation problem and the LS equation- 
error problem are similar to the time-domain Prony rne th~d ,~ '  discussed in 
Section 7.5. 

Numerous modifications can be made to this method. If the desired 
frequency response is close to what can be achieved by an IIR filter, this method 
will give a design approximately the same as that of a true LS solution-error 
method. It can be shown that E = O o  b = 0. In some cases improved results 
can be obtained by estimating A, and using that as a weight on E to 
approximate minimizing 8. There are iterative methods based on solving (7.130) 
and (7.126) to obtain values for A,. These values are used as weights on E to 
solve for a new set of A, used as a new set of weights to solve again for A , . ~ ~ , ~ '  
The solution of (7.1 30) and (7.126) is sometimes used to obtain starting values for 
iterative optimization algorithms that need good starting values for 
convergence. 
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FIGURE 7.32. Sixth-order least-squared equation-error IIR filter 

Example 7.9. Design of Least Square Equation-Error I I R  Filter 
To illustrate this design method, we designed a sixth-order low-pass filter 

with 41 frequency samples to approximate. The magnitude of those less than 
0.2 Hz is one and of those greater than 0.2 is zero. The phase was experimentally 
adjusted to result in a good magnitude response. The design was performed with 
Program 10 and the frequency response is shown in Fig. 7.32. 

Summary 

This section gave an LS error approximation method to design IIR filters. By 
using an equation-error rather than a solution-error criterion, we obtained a 
problem requiring only the solution of simultaneous linear equations. 

Like the FIR filter version, the IIR frequency sampling design method and 
the LS equation-error extension call be used for complex approximation and, 
therefore, can design with both magnitude and phase specifications. 

If the desired frequency-response samples are close to what an IIR filter of the 
specified order can achieve, this method will produce a filter very close to what a 
true LS error method would. However, when the specifications are not 
consistent with what can be achieved and the approximating is large, the results 
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can be very poor or, in some cases, unstable. It is particularly difficult to set 
realistic phase-response specifications. With this method it is even more 
important to have a design environment that will allow an easy trial-and-error 
procedure. 

7.4.3 Least Squared Error Frequency-Domain Design 

Practical problems occur in the design of a filter to separate signals according 
to their energy. Because the energy content of a signal is the integral or sum of 
the square of the signal, a mean squared error measure is natural. Unfortunately, 
for the IIR filter design problem, the optimization procedure is nonlinear. This 
fact was pointed out in the last section, where the equation error was used in 
order to have a linear problem. 

Because of the nonlinear nature of the LS error minimization, the method of 
solution becomes dependent on the desired frequency response, and therefore 
there is no single method for design. The mean squared error for magnitude 
approximation is defined as 

where x is a vector of filter parameters chosen to minimize q, and the error is 
sampled at L + 1 frequencies mi. SteiglitzZ8 chose the parameter vector x to be 
the coefficients of a cascade structure in order to best fit an iterative optimizat- 
ion scheme. He applied a standard optimization algorithm-the Fletcher- 
Powell method-to the minimization of (7.133). Other methods more directly 
related to a squared error measure can also be u ~ e d . ~ . ' ~  

Practical difficulties exist in solving this approximation problem. In some 
cases local minima rather than the global minimum are found. In other cases 
convergence of the minimization algorithm is slow or does not occur at all. 
Numerical problems can result from ill-conditioned equations, and there is no 
guarantee that the designed filter will be stable. 

Choosing a desired frequency-response function H,(o) so that the optimum 
approximation does not have a large error is important. It often means not 
having an abrupt discontinuity between the pass band and stop band. The 
techniques discussed in Section 3.2.2.1 are also applicable here. 

Another factor is starting the iterative optimization algorithm with a set of 
coefficients in x that is close to the optimum. That can be done by using the 
frequency-sampling method or the method of Section 7.4.2 to give a design that 
can be used to start an LS algorithm. Because the error defined in (7.133) is in 
terms of magnitudes, an unstable design can be converted to a stable one by 
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does not affect the magnitude frequency response, but it does stabilize the effect 
of that pole.28 

A generalization of the idea of a squared error measure is defined by raising 
the error to the p power, where p is a positive integer. This error is defined by 

D e ~ z k y ~ ~  developed this approach and used the Fletcher-Powell method to 
minimize (7.134). He also applied this method to the approximation of a desired 
group delay function. An important characteristic of this formulation is that the 
solution approaches the Chebyshev or min-max solution as p becomes large. A 
program for this design method is given in reference 10. 

7.4.4 The Chebyshev Error Criterion for 
IIR Filter Design 

The error measure that often best meets filter design specifications is the 
maximum error in the frequency response that occurs over a band. The filter 
design problem becomes the problem of minimizing the maximum error (the 
min-max problem). 

One approach to this error minimization, by Deczky, minimizes the p power 
error of (7.134) for large p. Generally, p = 10 or greater approximates a 
Chebyshev r e ~ u l t . ' ~ . ~ '  Dolan and Kaiser1' use a penalty function approach. 

Linear programming can be applied to this error measure3 '  33 by linearizing 
the equations in much the same way as in (7.129).' In contrast to the FIR case 
this can be a practical design method because the order of a practical IIR filter is 
generally much lower than for an FIR filter. A scheme called differential 
correction has also proven to be e f f e ~ t i v e ~ ~ , ~ ~ .  

Although the rational approximation problem is nonlinear, an application of 
the Remes exchange algorithm can be implemented36p38. Since the zeros of the 
numerator of the transfer function mainly control the stop-band characteristics 
of a filter, and the zeros of the denominator mainly control the pass band, the 
effects of the two are somewhat uncoupled. An application of the Remes 
exchange algorithm, alternating between the numerator and denominator, gives 
an effective method for designing IIR filters with a Chebyshev error criterion.37 
If the orders of the numerator and denominator are the same and the desired 
filter is an ideal low-pass filter, the Remes exchange should give the same result 
as the elliptic function filter in Section 7.2.4. However, this approach allows a 
numerator or denominator of any order to be set and pass band of any shape to 
be approximated. In some cases a filter whose denominator has lower order 
than its numerator produces fewer required multiplications than an elliptic- 
function filter.37,38 
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7.5 PRONY'S METHOD FOR TIME-DOMAIN 
DESIGN OF IIR FILTERS 

This section addresses the problem of designing an IIR digital filter with a 
prescribed time-domain response. Most formulations of time-domain design of 
IIR filters give nonlinear equations for the same reasons as for frequency- 
domain design. Prony, in 1790, derived a special formulation to analyze elastic 
properties of gases, which produced linear equations. A more general form of 
Prony's method can be applied to the IIR filter design by using a matrix 
d e ~ c r i p t i o n . ~ ~  

The transfer function of an IIR filter is given by 

and the impulse response h(n) is related to H ( z )  by the z  transform. 

Equation (7.1353 can be written as 

which is the z  transform version of convolution. This convolution can be written 
as a matrix multiplication. Using the first K + 1 terms of the impulse response, 
we write 

To uncouple the calculations of the a,  and the b,, we partitition the matrices in 
the same way as in (7.124) to give 
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where b is the vector of the M + 1 numerator coefficients of (7.135), a* is the 
vector of the N denominator coefficients (a, = I), h ,  is the vector of the last 
K - M terms of the impulse response, H ,  is the ( M  + 1)-by-(N + 1) partition of 
(7.137), and H ,  is the (K - M)-by-N remaining part. The lower K - M 
equations are written 

which must be solved for a*, the denominator coefficients in (7.135). The upper 
M + 1 equations of (7.138) are written 

which allow b, the numerator coefficients of the transfer function (7.135), to be 
calculated. 

If K = M + N ,  H ,  is square. If H ,  is not singular, (7.139) can be solved for a, 
and b can be calculated from (7.140). For this case there are M + N + 1 
unknown coefficients, and therefore the same number of impulse-response terms 
can be matched. If H ,  is singular, (7.1 39) may have many solutions, in which case 
h(n) can be generated by a lower-order system. 

Although Prony's method, applied to the time-domain design problem here, 
is similar to the solution of the frequency-sampling design problem, there are 
important differences. In (7.120) the IDFT is used to obtain the matrix of (7.121), 
which is cyclic convolution. Equation (7.1 37) is noncyclic convolution, and the 
K + 1 terms of h(n), used to form H ,  result from a truncation of the infinitely 
long sequence. 

Because the basic Prony method is an interpolation scheme to design a filter 
that exactly produces the first K + 1 terms of the specified h(n), it says nothing 
about h(n) for n > K. To control h(n) over a larger range of n, we pose an 
approximation problem. We define an equation-error vector for (7.138) 

If K > M + N, we cannot solve exactly (7.141), but we can find b and a that will 
minimize the norm of e by using the same methods as for (3.19). The normal 
equations of the lower part of (7.141) are 
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If H, has full rank, (7.142) can be solved for a*. This solution minimizes the 
lower part of e, and b = Hla  gives zero error for the upper part. 

If the solution error is defined as the difference between the desired impulse 
response and the actual impulse response by 

the length-& + 1) solution-error vector e is related to the equation-error vector 
e of (7.141) by 

e = Ae, (7.143) 

where A is a (K + 1)-by-(K + 1) convolution matrix formed from the a(n) 
coefficients. Prony's method minimizes Ilell, which is a weighted version of I I & ( I .  

Various modifications can be made to the form presented of Prony's method. 
After the denominator is found by minimizing the equation error, the numerator 
can be found by minimizing the solution error. It is possible to mix the exact and 
approximate methods of (7.138) and (7.141). The details can be found in 
references 39-41. 

Several modifications to Prony's method have been made to use it to 
minimize the solution error. Most of these iteratively minimize a weighted 
equation error with Prony's method and update the weights from the previous 
determination of a.42343 

If an LS error, time-domain approximation is the desired result, a mini- 
mization technique can be applied directly to the solution error. The most 
successful method seems to be the Gauss-Newton algorithm with a step-size 
control. Combined with Prony's method to find starting parameters, it is an 
effective design tool. 

7.6 IIR FILTER DESIGN PROGRAMS 

Several digital filter design programs are available. Most of the examples in this 
book were designed by the programs in the appendix. A more user-friendly 
commercial program is available from ASPI." It has provisions for Butter- 
worth, Chebyshev I and 11, and elliptic function filters with low-pass, high-pass, 
bandpass, and band-rejection forms. The program runs on an IBM or Texas 
Instruments (PC) and can produce machine language code for the TMS32010 
digital signal-processing chip. A somewhat similar program for the same IIR 
filter types is called DISPR0,12 which runs on the IBM PC. 

Certain IIR designs can be carried out by the large and versatile programs 
from ILS14 and ISP.lS These are general programs and run on mainframe 
computers, but smaller versions are available that will run on a PC. 

The FORTRAN program for the four classical approximations is given as 
program 9. It is written to closely follow the notation and theory developed in 
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this chapter so that each can help in understanding the other. The algorithms 
used are the most accurate and efficient known to the authors; however, the 
inputoutput sections are primitive and would have to be further developed for 
easy use. 

Four programs for IIR filter design are in reference 10. Part of the 
program DOREDI designs and simulates IIR filters, Deczky's program, Dolan 
and Kaiser's program, and Steiglitz and Ladendorf's program are all available 
in FORTRAN.'' A part of the SIG package from Lawrence Livermore Labs13 
designs IIR filters. Indeed, SIG is a very valuable tool for the signal processor. 

It is very instructive to design a variety of filters with different specifications 
in order to develop insight into their various characteristics. It is best 
accomplished with an interactive program with graphics output. 

Summary 

The chapter developed the main approaches to IIR filter design. The theory and 
design equations for the Butterworth, Chebyshev, inverse Chebyshev, and 
elliptic function filters were given along with variations to the Butterworth and 
Chebyshev for arbitrary zero locations. The elliptic function filter was developed 
in more detail than in most books because of the important nature of its 
optimality. The frequency-sampling and LS equation-error design methods 
were covered because of their simplicity and their ability to approximate 
arbitrary, complex, desired frequency responses. The problems of general LS 
error design and Chebyshev error design using the Remes algorithm were 
described and references were given. Finally, time-domain design methods based 
on Prony's methods were given, and general time-domain LS error methods 
were described and referenced. After the design of an IIR filter, the transfer 
function must be realized, and that is the topic of the next chapter. 
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Implementation of lnf inite 
Impulse- Response Filters 

All of the analysis of IIR filters in Part I11 has so far been in terms of linear 
systems. When the finite word-length effects of overflow and quantization error 
are considered, the digital filter becomes a nonlinear system. It is these 
nonlinearities of quantization that cause all of the difficulties in the analysis of 
fixed-point recursive filter implementations. 

This chapter begins with a discussion of different ways to implement recursive 
filters (different structures), with emphasis on second-order blocks. Quantization 
noise and coefficient quantization errors are analyzed with linear theory. 
Finally, the instabilities caused by overflow and quantization in a recursive filter 
are studied. 

8.1 RECURSIVE STRUCTURES 

When a filter is implemented with a recursive structure, the finite word-length 
problems become more severe than the problems associated with a nonrecursive 
filter structure.'-3 The following two problems are more difficult to analyze for 
recursive filters than they are for nonrecursive filters. 

1. Filter coefficient errors from quantization. 
2. Quantization noise and overflow from arithmetic operations. 

In addition to the effects of quantization of the coefficients and of finite- 
precision arithmetic discussed for nonrecursive filters in Chapter 5, two new 
problems are caused by the feedback in a recursive filter. 

1. Small-scale limit cycles, which are oscillations caused by the quantization 



234 implementation of Infinite Impulse-Response Filters 

nonlinearity in the seemingly stable feedback loop. They usually have low 
amplitude and can often be tolerated. 

2. Large-scale limit cycles, which are oscillations caused by overflow in the 
feedback loop. Their amplitude covers the complete dynamic range of the filter, 
so these cycles must be prevented. 

These problems are especially difficult to analyze for recursive filters. The 
approximation problem of designing a rational transfer function with quantized 
coefficients has not been solved. Although overflow leads to errors with 
nonrecursive filters, it can lead to large-amplitude. sustained oscillations in 
recursive filters. The whole area of instabilities introduced by finite word-length 
effects is still a subject of r e ~ e a r c h . ~  Different structures have different character- 
istics for these effects. That is the reason for examining different implementations 
of the same transfer function (different structures). 

In a recursive digital filter the output is a linear combination of past inputs 
and past outputs. Past outputs are fed back to produce the present output. The 
difference equation 

shows how the output y(n) is computed for a recursive filter with a transfer 
function 

When a recursive digital filter is implemented directly, as in (8.1), errors 
introduced by quantization of the coefficients can cause significant variation 
from the desired frequency response. A filter designed to be stable can become 
unstable after the coefficients are quantized. 

8.1.1 Coefficient Sensitivity 

When the coefficients in the difference equation (8.1), which implements a 
recursive digital filter, are quantized, the resulting coefficient errors can cause 
major changes in the filter characteristics. We can understand the effect of 
coefficient errors on both the frequency response and the stability by studying 
how the locations of the poles of the transfer function H(z) in (8.2) change when 
there are changes in the coefficients a, of the denominator of H(z). 

The transfer function of a recursive filter is a rational function of z, as shown 
in (8.2). To obtain H(z) in terms of positive powers of z, we rewrite it as 
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The denominator polynomial in (8.4) may be written as 

where a,  = 1 .O. 
To see how a change in coefficient a,  affects the pole location z,, consider the 

Taylor series expansion4 of l ( z )  considered as a function of z and a,: A"(z, 

- 
2 ( z m  + Az,, a, + Aa,) = A(z,, a,) + Aa, - 

aA"(z) + Az,  ---- + . . .. (8.6) 
zak az ,  

Assuming that Aa, and Az,  compensate to keep A(z)  the same, we get 

~ A " ( z ) / ~ u ,  
Az, = -Ask- -. 

aA"(z) /a~,  

Evaluating the partial derivatives in (8.7) gives 

Evaluating (8.8) and (8.9) at z = z ,  gives 

The expression for coefficient sensitivity (8.10) leads to several conclusions about 
recursive filter implementation: 

1. The filter is most sensitive to variations of the last coefficient a ,  because 
N - k is zero. 

2. Moving the pole z ,  closer to the unit circle ( ( z (  = 1) increases the sensitivity 
of the pole location to the variation of a coefficient because the numerator 
of (8.10) is larger. 
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3. Coefficient sensitivity increases when the poles are close together because 
of small values of z ,  - z j  in the denominator of (8.10). 

When there are sharp transitions in the frequency response (when N is large), 
it is difficult to have well-separated poles. Thus, for sensitivity reduction, a 
cascade of several lower-order sections is recommended instead of a direct 
realization of a high-order filter. In this way it is possible to have well-separated 
poles within each section and attain reduced sensitivity to coefficient variations 
within each lower-order section. Fourth- or even higher-order blocks may make 
sense for implementations where the multiply/accumulate operation is especi- 
ally easy to do, but generally the transfer function is broken up into second- 
order sections. The second-order sections are much easier to analyze than 
higher-order blocks. 

Since the coefficient sensitivity, according to conclusion 3, increases when 
poles are close together, very narrow-band filters are more sensitive to 
coefficient errors than wide-band filters because the poles are usually clustered 
around the pass-band region of the z plane. 

8.1.2 Second-Order Structures 

The sensitivity analysis in Section 8.1.1 indicates that a less-sensitive structure 
may be obtained by breaking up the transfer function into lower-order sections 
and connecting these sections in parallel or  in cascade. Although higher-order 
blocks may be attractive in some applications, the second-order section is a 
good building block to use in parallel or cascade structures. The principles 
illustrated by the second-order sections described in this section also apply to 
higher-order sections. 

The most direct form for implementing the difference equation 

is shown in Fig. 8.1. The direct structure in the figure can be simplified, 
-! 

combining the four delay blocks into two, as shown in Fig. 8.2. 

r(n) - - y(n) 

FIGURE 8.1 Direct implementation of a second-order block. 
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The same difference equation may also be implemented in the transpose 
structure, shown in Fig. 8.3. It is called the transpose structure because it can be 
obtained from the state-variable or matrix description of Fig. 8.2 by transposing 
the appropriate matrices,' as described in Section 8.1.5. An alternative structure 
is the coupled form for a second-order block, proposed by Gold and Rader.6 
This structure implements a conjugate pair of poles with real part R and 
imaginary part f I, as shown in Fig. 8.4. 

Other structures may be used to implement a second-order section. One 
family of structures may be derived from a state-variable analysis, as described 
in Section 8.1.5.' There are also lattice structures,' wave digital filter structures,' 
ladder filteq9 and many others. Each of these structures may be used to 
implement low-order blocks and may be combined with other blocks im- 
plemented with different structures. The possibilities are endless. 

This section has only presented the basic direct, transpose, and coupled 
structures because they are easy to understand and work quite well when 
enough bits are available for coefficient and signal representations, so quantizat- 

FIGURE 8.2 Direct-form-second-order block. 

FIGURE 8.3 Transpose Form Second-order Block. 

- - 
FIGURE 8.4 Coupled-Form for Second Order Block. 
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ion effects are not serious. When fewer bits are available, more complicated 
structures less sensitive to quantization errors may be necessary.'.' 

8.1.3 Cascade Structures 

By factoring, we can write the rational transfer function 

where [ N / 2 ]  is the smallest integer 3 N / 2 .  
Each of the second-order factors in (8.13) can be implemented with one of the 

structures described in Section 8.1.2, giving a realization of H ( z )  as a cascade of 
second-order sections, as shown in Fig. 8.5. If the filter has an odd order, then a 
first- or third-order section is necessary. 

There are many different cascade structures corresponding to different 
orderings of the Hk(z)  blocks and different pairings of the numerator and 
denominator factors of (8.13). This freedom of ordering and pairing may be used 
to reduce quantization noise. In the design example in Section 8.5, the zeros are 
paired with nearby poles to reduce the possibility of a very peaked frequency 
response for that section. As described by Jackson,' second-order sections are 
ordered so that the section with the poles closest to the unit circle is last. To 
determine the best pairing and ordering for a particular filter, one must evaluate 
the quantization noise for all possibilities, using the methods described in 
Section 8.2.3. 

It is possible to use different structures for different sections. For example, 
those sections with poles near the unit circle can be implemented with structures 
that have lower sensitivity but may require more computation. Sections with 
well-separated poles away from the unit circle can be implemented with simpler 
structures. 

A possible advantage of the cascade structure is that unit circle zeros of the 
overall transfer function can easily be implemented. When the numerator 
coefficient b,, in (8.13) is equal to unity, the zero for the k th section is on the unit 
circle. In the cascade structure if one section has a zero on the unit circle, then 

FIGURE 8.5 Cascade Structure. 
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(except for possible pole-zero cancellation) the entire filter will have a zero on 
the unit circle. 

8.1.4 Parallel Structures 

If the denominator of (8.12) has N ,  real roots and N ,  pairs of complex-conjugate 
roots, then a partial fraction expansion of (8.12) gives 

M - N  

H(z) = x p k Y k  + . (8.14) 
k = 0 

When both the real and complex-conjugate poles are grouped in pairs, (8.14) 
becomes 

IN121 M - N  
H(z) = x Hk(z) + 2 pkz-k 

k =  1 k = O  

with 

The parallel structure is shown in Fig. 8.6 for M = N. 
In the parallel structure, unlike the cascade structure, reordering the Hk(z) 

blocks makes no difference; therefore the problem of choosing the order of 
second-order blocks is avoided. Further, unlike the cascade structure, scaling 
can be performed for each block independently of the other blocks. A possible 
disadvantage of the parallel structure is the difficulty of exactly placing zeros on 
the frequency axis (unit circle). In the cascade structure it is easy to place a zero 
of the filter on the unit circle by simply placing the zero of one of the cascaded 
sections on the unit circle. However, in the parallel structure the zeros depend on 
cancellation of terms in the summation and are more sensitive to coefficient 
quantization.2 

FIGURE 8.6 Parallel Structure 
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8.1.5 State-Variable Filter Descriptions 

It is often convenient to model a digital filter as a linear time-invariant system 
with constant coefficient, matrix difference equations called state equations.' 

With the state vector x, single input u, and output y, 

For an Nth-order single-inputlsingle-output system, the sizes of the matrices are 

A  N x N  
B  N x l  

C  1 x N  
D 1 x 1  

The transfer function of the system in (8.15) is 

where Z is the identity matrix. 
Many choices of A, B, C ,  and D in (8.17) give the same transfer function (8.18). 

Let 

A' = M - ' A M ,  B ' =  M - ~ B ,  C' = C M ,  D'= D. (8.19) 

The system described in (8.19) has a transfer function 

H1(z) = C'[zZ - A ' I 1 B '  + D'. (8.20) 

Substituting (8.19) into (8.20) gives 

Since 

we have H1(z) = H(z). 
If the digital filter were a linear system, then all of the infinitely many systems 

described by (8.20) for different choices of M  would all have the same behavior 
(i.e., would all be equivalent). However, since a digital filter is not a linear system 
because finite word-length arithmetic is used, different choices of M  (different 
realizatioils of the filter) will have different properties. The discussion in Section 
8.3 describes how to choose M  to minimize the effects of quantization noise. A 
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FIGURE 8.7 State-Variable Structure. 

block diagram of the state-variable structure is shown in Fig. 8.7 for 

The state-variable structure requires much more arithmetic than the simpler 
direct and transpose structures. 

8.1.6 Other Structures 

Many other structures for implementing digital filters have been proposed as 
alternatives to the cascade or parallel connection of second-order blocks. These 
structures are generally less sensitive to coefficient errors. The ones mentioned 
here are the lattice7 and the wave digital filter.' 

Lattice 
The lattice structure is widely used for speech synthesis.' It is less sensitive to 
coefficient errors than the direct forms, has a nice interpretation in terms of an 
acoustic tube, and has a simple way to test for stability. The lattice section in Fig. 
8.8 can be connected to other sections to form a higher-order filter. 

FIGURE 8.8 Lattice Section. 
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Wave Digital Filters: 
The wave digita1,filter structure has been developed from analog LC filters by 
Fettweis.' There are several types of wave digital filters with varying com- 
putational and storage requirements. The class of wave digital filters is 
characterized by a very low sensitivity to coefficient errors. 

Generally, as the structure of a digital filter becomes more and more complex, 
part of the load of doing the filtering is lifted from the coefficients and is carried 
in the structure itself. The more complicated structures, such as the wave digital 
filter, are capable of operating with very few bits for coefficient representation. 
Conversely, if 16 or more bits are available for the coefficients and the signal 
variables, then a simpler structure usually suffices. 

Summary 

Direct implementation of a high-order recursive filter is not practical with finite 
word-length fixed-point arithmetic. Low-order blocks can be implemented in 
the direct form and connected either in cascade or in parallel to construct less- 
sensitive filter structures. 

More complicated filter structures that require more computation are less 
sensitive to finite word-length effects. Some popular examples of these structures 
are minimum-noise, state-variable filters, lattice filters, and wave digital filters. 

8.2 FINITE WORD-LENGTH EFFECTS 

For the minimum computing time or for the most powerful filter that can be 
computed in a given time, fixed-point arithmetic is usually the best choice. Most 
signal-processing chips use fixed-point arithmetic for the most efficient use of the 
limited silicon area available. This section analyzes in detail fixed-point 
implementations of recursive filters. The finite word-length effects are more 
complicated and potentially cause more trouble with recursive filters than with 
nonrecursive filters. 

Finite word-length effects are divided into four categories: 

1. Filter coefficient errors. 
2. Quantization noise and overflow errors in representing signals as fixed- 

point numbers. 
3. Small-scale limit cycles due to the nonlinear quantization characteristics 

of fixed-point implementations. 
4. Large-scale limit cycles due to the nonlinear overflow characteristics of 

fixed-point implementations. 

Each of these aspects of digital filtering requires a different type of analysis. 
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8.2.1 Coefficient Quantization 

As described in Section 8.1.1, a recursive filter is less sensitive to coefficient errors 
when it is implemented with second-order blocks. Even with a second-order 
block, there are only a finite number of pole locations because of the coefficient 
quantization. It may not be possible to place a pole in the exact spot in the z 
plane specified by a design procedure described in Chapter 7. For example, in 
digital oscillator design there are limits on the frequencies of oscillation that can 
be obtained. For very low frequencies (poles near + I), especially, there are not 
many possible pole locations. As shown in Example 8.1, surprisingly few low 
frequencies are available, even when 16-bit coefficients are used.9 

Example 8.1 A Digital Oscillator 
A digital oscillator has an output y(n) that satisfies the homogeneous 

difference equation 

The roots of the characteristic equation 

are located at 

where the frequency of oscillation is 

For very low frequencies ( fo z 0) the approximation 

may be used so that the lowest frequencies of oscillation, corresponding to 

are approximately 
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where Q = 2-'+' is the quantization step size. For 16-bit coefficients B = 16 
and 

J m  
for" = K3 

The possible frequencies or, equivalently, the possible pole locations are not very 
dense for regions near + 1 in the z plane, even with 16-bit coefficients in the 
difference equation. The reason is that even small changes in the coefficient b, 
cause large changes in the argument of the cosine function in (8.27), because the 
cosine function is so flat for small values of the angle 2 6 .  

The same quantization of pole locations that is shown in Example 8.1 is also 
present in recursive filters. Different second-order filter structures have different 
grids of possible pole and zero locations (see reference 2 for examples). 

The problem of optimum design for quantized coefficients is much more 
difficult for the rational transfer function of the IIR filters than it is in the FIR 
case, and there are no convenient programs available for designing optimum, 
quantized coefficient IIR filters. The following trial-and-error approach is useful 
in practice and should give satisfactory results in most cases.1° 

1. Design the filter and assume no coefficient quantization. 
2. Quantize coefficients in the scaled filter and check the frequency response. 

Also check the pole locations to determine stability of the filter. 
3. If the filter in step 2 meets specifications in some bands but not in others, 

tighten the requirements on the failed bands and relax the weighting on 
the others. Then repeat step 1. If the filter fails to meet specifications in all 
bands, increase the order and repeat step 1. 

8.2.2 Scaling and Overflow 

Scaling is even more important for recursive filters than for nonrecursive filters. 
For a nonrecursive filter an overflow of the output register only causes an error 
in the output sample, but for a recursive filter an overflow is fed back and affects 
many following outputs. For structures that can have large-scale limit cycles, the 
overflow can set off an oscillation with full-scale amplitude, which completely 
destroys the usefulness of the filter output for all time after the overflow occurs. 

The principles of scaling are the same as for nonrecursive filters. First, the 
unit-pulse responses (equivalently the frequency responses) are calculated 
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input 
x ( n )  4 

- 
T 

FIGURE 8.9 Scaling Resonses to Registers 

h l ( n )  

between the input and the various registers (adders) in the filter where overflow 
might occur (see Fig. 8.9). 

The three most useful measures of gain from the input to register k are 
essentially the same as the measures described in Section 5.3.3. They are 
repeated here for convenience. We assume that all registers are the same size 
(e.g., all 16-bit registers) so that the scale factor G, must be calculated to make 
the magnitude of the signal at the kth register less than unity to prevent 
overflow. The scaled unit-pulse response is given as 

- 
fl 

The gain factor is equal to one of the following three measures of the size of h(n). 

T 

- 
y hk(n)  

The 1, norm of h is of the form 

register 1 

register k 

The Chebyshev norm of the frequency response H(F) is 

The I, norm of h is given as 

If G, = Ilhlll, then the signal at register k is guaranteed not to overflow. A 
larger gain occurs (with the resulting smaller quantization noise) if G, = liHllc. 
This choice of gain only guarantees that the steady-state response of the system 
to a sine wave will not overflow. Transient signals may occasionally cause 
overflow. The third choice of the gain factor G = 1 1  hi, also allows overflow, but 



246 Implementation of Infinite Impulse-Response Filters 

lends itself to a calculation of the probability of overflow1. The scaling 
procedure is described in detail for a second-order section in Example 8.2. 

Example 8.2 Scaling a Second-Order Section 
The transpose structure for a second-order filter shown in Fig. 8.10 has a 

transfer function 

This transfer function can be used to calculate the appropriate gain factor to use 
in scaling to control overflow in the summation at the output. It is also 
necessary to calculate the transfer functions to the individual internal adders. 
The output of the first adder is denoted y,, and the transfer function from the 
input to yl is 

The output of the second internal adder is denoted y,, and the transfer function 
from the input to y, is 

-- y2(z) - H2(z) = 
(b, - a,b,) + (b, - a2bo)z-' 

X(z) 1 + a,z-' + a2zY2 

These transfer functions (or the corresponding unit-pulse responses) are now 
used to calculate the gain factors. See the design example in Section 8.4 for a 
detailed illustration of these scaling principles. 

Summary 
Scaling is performed by first calculating the transfer function from the input to 
the register where overflow is possible. Various measures of the effective gain of 
this transfer function can be used to determine a scale factor to use in reducing 
the gain, if necessary, so that the possibility of overflow is eliminated, or at least 

x ( n ) ) b  2- , ~ ( n )  

-a2 -a1 

FIGURE 8.1 0 Transpose Structure Scaling. 
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limited. The gain should not be reduced any more than necessary in order to 
preserve the output signal to quantization noise ratio. 

8.2.3 Quantization Noise 

Multiplying a B,-bit number with a B2-bit number gives a (B, + B2)-bit 
product. Because of the recursive nature of the computation in (8.1), the 
(B, + B2)-bit product must be approximated by fewer bits or else the word 
length would grow without bound. As described in Section 5.1, either truncation 
or rounding may be used to give a B-bit approximation to the (B, + B,)-bit 
number. The difference between the true product z = x .  y and the approximate 
B-bit representation [zlQ, e = z - [zlQ, is modeled as a uniformly distributed 
random variable that is independent of the value of z. As shown in Section 5.1, 
the variance of this quantization noise is Q2/12, where the quantization step size 
Q = 2-B+1. When rounding is used, the noise n is called roundoffnoise and has 
zero mean. Rounding will be assumed for the remainder of this discussion. When 
the product is rounded to B bits, the noise has, from (5.10), a variance of 2-2B/3. 

For the purpose of roundoff noise analysis, the digital filter is modeled as a 
linear, time-invariant system. As in Chapter 5, a noise source with mean zero 
and variance given by (5.10) is used to represent the rounding error made after 
multiplication. The noise samples are assumed to be independent, resulting in a 
white-noise source with a noise power of 2-2B/3. 

The noise power at the output is found by assuming that each noise source is 
independent of all the others so that the total power is simply the sum of the 
individual noise powers. The noise power at the output that results from one 
noise source ni is found by first calculating the transfer function from the 
location of the ith noise source, Hi(z), and then evaluating the power by 
integrating the noise power spectral density3 to give 

Figure 8.1 1 illustrates how the noise sources contribute to the total output noise. 
The blocks labeled Hi  correspond transfer functions from the location of the ith 
noise source to the output of the filter. Roundoff noise analysis will only be 

FIGURE 8.1 1 Contributions of Noise Sources. 
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FIGURE 8.12 Transpose Structure with Quantization Noise 

carried out in detail for second-order sections. The principles illustrated by these 
structures also apply to higher-order sections. 

Example 8.3 Noise Power Calculation for a Second-Order Block 
The transpose structure in Fig. 8.3 is reproduced in Fig. 8.12 with the additive 

quantization noise indicated by additive noise errors ei(n) at the three places 
where the signal must be quantized. The transfer function from the first noise 
source e ,  to the output is 

The transfer function from the second noise source e ,  to the output is 

Finally, the transfer function from the third noise source to the output is 

All three of these transfer functions have the same squared magnitude, so the 
noise gain factor for all three is 

After evaluating the integral in (8.40), we get 

1 + a2 
R = 

( 1  - a2)[ (1  + - a:] ' 

The largest noise gain R occurs when the filter has a double pole near either + 1 
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(zero frequency) or - 1 (one half of the sampling frequency) with a: = 4a2. In 
this case 

1 + a, 
R = R,,, = 

(1 - a2j3 ' 

The smallest noise gain occurs when the filter has poles near plus or minus one 
quarter of the sampling frequency with a, = 0 and 

The total noise power is 

where Q = 2-2B/3. 
This example shows that the largest noise gain occurs for narrow-band low- 

pass (poles near + 1) or high-pass filters (poles near - 1). Further, according to 
(8.42), when the poles are near the unit circle (a, close to I), the noise gain is 
especially large. The smallest noise gain occurs for filters with the pass band near 
one half the sampling frequency; poles not too near the unit circle correspond to 
a small value of the coefficient a, (see (8.43)). 

Summary 

Quantization noise is modeled as independent white-noise sources inserted at 
each point where the signal is quantized. The contribution of each noise source 
to the output is determined by the transfer function from the location of the 
noise source to the output. An example using a transposed second-order section 
is given. The total noise power at the output of the filter is calculated as the sum 
of the individual contributions. The transposed structure does not have the best 
noise characteristics. The direct implementation in Figure 8.1 is better and 
minimum noise structures are better. 

8.2.4 Limit Cycles 

In the analysis of recursive filters, we have thus far assumed that the filter was a 
linear system. The quantization noise analysis in Section 8.3.3 modeled the 
quantization error as an additive noise source and used linear system theory to 
provide estimates of the noise power resulting from quantization. 

Digital filters are not linear systems because of the overflow and quantization 
phenomena. The overflow phenomenon is a distinctly nonlinear type of 
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behavior. The methods used to handle overflow (two's complement and limiting 
types) determine the specific type of nonlinearity and the filter's response after an 
overflow. A digital filter that is stable according to a linear model (all poles 
inside the unit circle) may nevertheless begin to oscillate when an overflow 
occurs. This type of oscillation is called a limit Example 8.4 illustrates 
this possibility. 

Example 8.4 Two's Complement Limit Cycle 
In this example a second-order filter is shown to exhibit an overflow limit 

cycle. The filter's transfer function is 

The structure is shown in Fig. 8.13. The block labeled NL represents the 
nonlinearity that results from two's complement arithmetic. The nonlinear 
characteristic is illustrated in Fig. 8.14. If the function NL were a linear function, 
the system would be stable, with poles at z,,, = 0.5 _+ j0.5. 

A state-variable analysis of the filter uses the outputs of the delay elements as 
state variables, as shown in Fig. 8.13. 

FIGURE 8.13 Direct Structure with Limit Cycles. 

FIGURE 8.14 Two's Complement Overflow Nonlinearity. 
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With an initial state of xl(0) = 0.8 and x,(O) = -0.8, (8.46) gives 

and for n 2 1 

Thus, the system oscillates back and forth between the two states 

x1 = +0.8, X, = -0.8, 
and 

X, = -0.8, X, = +0.8, 

and is said to be in a limit cycle. 
Overflow limit cycles will not occur in the structure of Fig. 8.13 if there is no 

overflow to start them and the initial state does not start one. There will be no 
overflow if the argument of NL is less than 1. In other words, 

Since Ixl,,l < 1, no limit cycles will occur if 

This is a rather severe limitation on the filter coefficients and rules out most 
practical filters. 

Overflow limit cycles can be eliminated by using another nonlinearity, such 
as the limiting type of nonlinearity shown in Fig. 8.15. 

It has been shown1' that the use of the nonlinearity in Fig. 8.1 5 will guarantee 
the absense of large-scale, overflow limit cycles in the direct structure of Fig. 8.2 
complement nonlinearity in Example 8.4 is replaced by the nonlinearity in Fig. 
8.15, the state decays to zero with zero input. This suggests using the 

Input 

FIGURE 8.1 5 Limiting Type of Nonlinearity. 
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nonlinearity of Fig. 8.15, which can be implemented on the TMS32010 chip by 
setting the overflow mode (OVM). However, it is possible to have overflow limit 
cycles in the direct structure with the nonlinearity of Fig. 8.15 when the input is 
nonzero, as shown by Example 8.5. 

Example 8.5 Limit Cycle with Limiting-Type Nonlinearity 
The filter in this example is the same as in Example 8.4, except that the 

limiting type of nonlinearity, L, shown in Fig. 8.15, is used. The input is a 
constant value; that is, x(n) = -0.5 for all n. With the limiting type of 
nonlinearity, L, the state equations are 

With the same initial state as Example 8.4, x,(O) = 0.8 and x,(O) = -0.8, (8.52) 
gives 

and, for n 2 2, 

The state remains at the constant value of (8.54). This condition is also called a 
limit cycle. 

The state-variable representation of a second-order digital filter can be used 
to obtain conditions for the absence of limit cycles.' A general, linear, second- 
order system can be expressed in state-variable form by the equations 

If the system is stable (both eigenvalues of the A matrix in (8.55) are < 1) and if 
the quantization corresponds to a nonlinearity with the property that 

The system is stable i f  and only if either of the two conditions holds': 

(a) a12a21 3 0, 
(b) a12a,, < 0 but (a,, - a,,( + det A < 1. (8.57) 
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Both the two's complement and the limiting nonlinearities satisfy condition 
(8.56). For example, the direct structure corresponds to 

From condition (b) of (8.57), we get 

(a,, - a,,( + det A = lull + a, < 1 (8.59) 

as the necessary and sufficient conditions for absence of limit cycles in the direct 
structure. 

As another example, consider the A matrix for the coupled-form structure, 
which is stable for r < 1. 

For sin(6) # 0, a,,a,, < 0, and condition (b) of (8.57) gives 

(a , ,  - a,,J + det A = 0 + r2(cos2(6) + sin2(6)) < 1. (8.61) 

From (8.61) we see that the coupled-form structure is free of overflow limit cycles 
for both the two's complement and the limiting-type of nonlinearities when the 
input is zero. 

If the nonlinearity is limiting type, then it has been shown4 that no overflow 
limit cycles with a nonzero input exist when the conditions in (8.57) are satisfied. 
A complete analysis of limit cycles, both overflow and small scale, is contained in 
reference 4. Conditions for stability are given in terms of allowed coefficient 
ranges for several types of overflow nonlinearities and for direct, coupled, wave 
digital, and lattice structures. 

Small-Scale L imit Cycles 
The overflow limit cycles have full-scale amplitude and can overwhelm any 
signal components. The conditions for eliminating this type of limit cycle depend 
on the filter structure and the way that overflow is handled. There is another 
type of limit cycle that has a much smaller amplitude and depends on the type of 
quantization used after a multiplication and on the structure of the filter.'' 

Small-scale limit cycles often occur when the input to the filter is a constant 
and products are rounded. The rounding itself introduces small amplitude 
oscillations in the filter. An estimate of the amplitude of the limit cycles has been 
given by Jackson2 for a second-order block with a denominator 

A(z) = z 2  + a,z + a,. (8.62) 
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For a B-bit word length, when rounding is used, the maximum magnitude of a 
small-scale limit cycle is estimated to be 

where x,,, means the smallest integer less than or equal to x. Equation (8.63) 
implies that the amplitude of small-scale limit cycles can be reduced by 
increasing the word length (increasing B) and/or by reducing the magnitude of 
a,. Reducing the size of a, corresponds to moving the poles away from the unit 
circle. 

Truncation, rather than rounding, is recommended to eliminate small-scale 
limit cycles. For example, the coupled-form structure will have small-scale limit 
cycles with rounding but will not have small-scale limit cycles when truncation is 
used. See references 2 and 4 for more detail on small-scale limit cycles. 

Summary 

Section 8.2 covered finite word-length effects for recursive filters. Coefficient 
quantization was shown to limit the possible pole locations and therefore limit 
the possible frequencies of an oscillator. The degradation of frequency response 
of a filter due to coefficient quantization was corrected by redesigning the 
unquantized coefficient filter with possibly higher order. The scaling and 
quantization noise problems were evaluated in detail for second-order sections. 
Filters with poles near the unit circle wcre shown to have more serious 
quantization noise problems. 

Limit-cycle oscillations were shown to result from the nonlinearities inherent 
in a digital filter implementation. The possibility of overflow limit cycles of large 
amplitude could be reduced by using limiting-type overflow characteristics. 
Small-scale limit cycles were shown to have an amplitude that could be reduced 
by using more bits, by moving poles away from the unit circle, or by using 
truncation arithmetic. 

8.3 MINIMUM-NOISE FILTER REALIZATIONS 

As discussed in Section 8.1, many different filter structures have the same 
transfer function. One structure is obtained from another by use of the 
transformation matrix M. Mullis and Roberts1' have shown how to transform 
the state representation of a filter to obtain the minimum possible quantization 
noise. Although the minimum-noise structure can be derived for any order filter, 
the number of multiplications proportional to N2 for an Nth-order filter, 
becomes prohibitive for high-order filters. A compromise realization uses 
second-order blocks that individually have the minimum-noise structure in a 
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parallel or cascade connection. The overall structure will not have the minimum 
possible noise, but it will have low quantization noise, low sensitivity to 
coefficient variations, and a reasonably low number of multiplications. 

A derivation of the results of Mullis and Roberts" is not presented here. 
Instead, we give the equations for a second-order minimum-noise structure9. 
This second-order section can then be used in parallel or cascade connections 
for higher-order filters, as described in Section 8.1. 

For a transfer function, 

the direct form has the state-variable representation 

and the minimum-noise structure has 

C' = r dl cos - d2 sin - , D' = [dl. I (:I (31 
The parameters in the minimum-noise representation (8.66) for poles at R 2 jl 
are 

where dl and d, are scaling constants based on appropriate norms of the 
response of the first and second state variables to a unit pulse input. (See Section 
8.2.2). 

Since the minimum-noise filter has a,  ,a2, < 0, a , ,  = a,,, and det A < 1, the 
minimum-noise filters satisfy the conditions (8.57) for stability. If the limiting- 
type of nonlinearity shown in Fig. 8.15 represents the way that overflow is 
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treated, then the minimum-noise filter will not have overflow limit cycles 
regardless of whether the input is zero or not. 

8.4 DESIGN EXAMPLE 

This design example gives a detailed five-step design and implementation of a 
fourth-order elliptic filter. The cascade of two second-order blocks is used. Each 
block is implemented in the transpose structure. The poles are paired with the 
closest zeros. The section with poles nearest the unit circle is used at the output. 
Scaling for the filter is performed first for the first second-order section. The 
impulse response of this scaled first section is then convolved with each of the 
appropriate impulse responses of the second section, and scaling is done on the 
second section. 

STEP 1. The first step in the design is to decide on the filter specifications. For 
this example the specifications call for a fourth-order elliptic filter. The 
specifications and the output of Program 9 are given in Fig. 8.16. 

a) 
Desired pass-band edge 0.25 
Desired stop-band edge 0.30 
Desired pass-band max. attn. 0.5 dB 
Desired stop-band min. attn. 32 dB 

c) 
Real part Imaginary part Magnitude Phase 

Zeros 

-0.81 08920e+ 00 0.5851 958e+00 0.1 000000e+ 01 0.251 6471 e+01 
-0.81 08920e + 00 - 0.5851 958e + 00 0.1 000000e + 01 -0.251 6471 e +01 
-0.3579478e+ 00 0.933741 6e +00 0.1 000000e +01 0.1 936865e +01 
-0.3579478e +00 -0.933741 6e +00 0.1 000000e+ 01 -0.1 936865e+01 

Poles 

0.201 5399e + 00 0.4389205e + 00 0.4829798e + 00 0.1 140341 e + 01 
0.201 5399e + 00 - 0.4389205e + 00 0.4829798e + 00 -0.1 140341 e + 01 

-0.257091 6e -01 0.8925394e + 00 0.8929096e + 00 0.1 599593e + 01 
-0.257091 6e - 01 -0.8925394e + 00 0.8929096e + 00 -0.1 599593e +01 

FIGURE 8.1 6 Fourth-order elliptic low-pass design example (a) specifications; (b) Transfer 
function; (c) zeros and poles. 
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STEP 2. The next step is to decide on the structure for implementing the filter, as 
described in Section 8.1. The cascade structure in Fig. 8.5 was chosen for this 
example. Each second-order block was implemented with the transpose 
structure shown in Fig. 8.3. The poles farthest from the unit circle were used for 
the first section in Fig. 8.17. The pair of zeros closest to these poles was used. 

STEP 3. To scale section 1, we calculated the impulse response and frequency 
response from the input x to each of three points where overflow could occur; 
these points are labeled y,,, yI2,  and y ,  in Fig. 8 .17~.  For the impulse response 
to the output of the section, y,, the 1, and 1, norms are 5.30748 and 2.7843, 
respectively. The maximum value of the frequency response, shown in Fig. 8.18, 

FIGURE 8.17 (a) Coefficients for Section 1; (b) Impulse response to y, for Section 1. 
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Frequency 

Frequency 

(Expanded Scale) 

FIGURE 8.18 Frequency response to output of Section 1. 

is 4.38. The impulse response y,, and its Fourier transform, the frequency 
response H , , ,  are shown in Figs. 8.19 and 8.20, respectively. The impulse 
response y,, and frequency response HI, are shown in Figs. 8.21 and 8.22. The 
three different measures of gain are shown in Table 8.1 for each of the three 
locations in Section 1. 

Figure 8.23 shows the scaled coefficients for section 1, which were obtained by 
dividing the original numerator coefficients by the I ,  norm of the impulse 
response y,, the largest 1, norm. This scaling strategy is the most conservative. 

TABLE 8.1. Norms for  Scaling Section 1 

location I, norm I, norm max IH(f)l 
----pp--p-ppp 

1 5.30748 2.7843 4.38 
11 1.771 5 0.9774 1.28 
12 4.30748 2.5985 3.67 



Transfer function t o  y, , : 

A,, , , , = -0.4030702997 

A,, , ,, = 0.2332661 953 
B,, , ,, = 0.766733805 
B,, , ,, = -0.781377681 

B,, 12, = 0.0 

I, norm = 1.771 5 
I, norm =0.9774 

FIGURE 8.19 (a) Transfer function to location J , ,  in Section I: (b) Impulse response to location 
y,, in Section 1. 



Frequency 

FIGURE 8.20 Frequency response to location y, , in Section 1. 



Section 1 Transfer function to y , , :  

A,,,, = -0.4030702997 
A,,,,, = 0.2332661 953 
B,, ,,, = 2.024854296 
B,, ,, , = 0.766733805 
B(, ,,, = 0.766733805 

B,,,,, = 0.0 

1, norm =4.30748 
1, norm = 2.59849 

Time 

(b) 

FIGURE 8.21 (a) Transfer function to location y,,  in Section 1 ;  (b) Impulse response to location 
y,,  in Section 1. 



Frequency 

Frequency 
(Expanded Scale) 

FIGURE 8.22 Frequency response to location y,2 in Section 1 .  
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Scaled, quantized coefficients: 

(original b coeff. divided by 5.30748) 

decimal hex 
a , ,  = -0.4030703 CC68 
a, ,  = 0.2332662 1 DDC 
b, , = 0.1 8841 33 181E 
b , ,  = 0.3055656 271 D 
b, ,  = 0.18841 33 181E 

FIGURE 8.23 Scaled, quantized coefficients for Section 1 .  

STEP 4. To scale section 2, we calculated the impulse response and frequency 
response from the second stage input, x ,  to each of three points where overflow 
could occur; these points are labeled y,, ,  y,,, and y ,  in Fig. 8 .24~.  Because we 
are interested in scaling according to the input, x ,  of the filter, not the input of 
the second section, these three impulse responses are convolved with the impulse 
response of the scaled section 1. In this way the impulse response is calculated 
from the filter input x to the three locations in the second section, y,, ,  y,,, and 

FIGURE 8.24 Coefficients for Section 2. 



264 Implementation of Infinite Impulse-Response Filters 

TABLE 8.2. Norms for 
Scaling Section 2 

location I, norm 

scaled, quantized coefficients: 

(original b coefficients divided by 2.855274) 

Decimal Hex 
a,, = 0.051 421 4 0695 
a,, = 0.7972861 660D 
b,, = 0.35022908 1 A00 
b,, = 0.25072745 129D 
b,, = 0.35022908 1 A00 

FIGURE 8.25 Scaled, quantized coefficients for Sectlon 2. 

y,. For the impulse response to the output of the section, y,, the 1, norm is 
2.85527. The other two impulse response responses have smaller norms, as 
shown in Table 8.2. 

Figure 8.25 shows the scaled coefficients for section 2, which were obtained by 
dividing the original numerator coefficients by the I ,  norm of the impulse 
response y,, the largest 1, norm. This scaling strategy is the most conservative. 

STEP 5. The scaled coefficients calculated in steps 3 and 4 were used in an 
assembly language program implementing the cascade of two transpose 
structure second-order sections. Program 12 in the appendix is a complete 
assembly language program for the TMS32010. 
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The entire five-step procedure was repeated for a cascade of two second-order 
sections where each section was implemented in the direct form. The details have 
been omitted since they are essentially the same as for the transpose structures. 
Program 13 is an assembly language program for this direct structure 
implementation. 
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Summary 





Summary 

This summary chapter reviews the highlights of the book, comparing and 
relating the various aspects of the approximation and realization problems in 
digital filter design. Section 9.1.1 summarizes the key features of FIR filters, and 
Section 9.1.2 focuses on IIR filters. 

9.1 COMPARISON OF FILTERING ALTERNATIVES 

9.1.1 FIR Digital Filters 

An FIR digital filter has a finite-duration unit-pulse response. Its transfer 
function is a polynomial in z -  l. 

A length-N filter has a transfer function that has N - 1 zeros in the z plane and 
has an order N - 1 pole at the origin of the z plane. 

An FIR filter is called an all-zero filter because it has zeros but no poles other 
than that at the origin. 

An FIR digital filter can have exactly linear phase. In other words, the group 
delay of the filter can be a constant. This linear-phase property results from 
symmetry of the unit-pulse response of the filter. An IIR filter has an infinite- 
duration unit-pulse response that cannot be symmetric if it is causal ( = 0  for 
n < 0). Therefore, an IIR filter cannot have exactly linear phase. Of course, an 
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IIR filter can be designed with a good approximation to linear phase, at least 
over a limited band of frequencies. The delay of a causal linear-phase FIR filter 
of length N is exactly (N - 1)/2. The required filter length N increases when 
sharp transitions between frequency bands are specified, and/or large at- 
tenuations are required in the stop bands. Thus, high-performance, linear-phase 
filters with sharp cutoffs and large attenuations necessarily are long and have 
large, though constant, delays and a large number of coefficients to be stored. 

When a precisely constant delay is not required for all frequencies, better FIR 
filters can be designed. When the group delay is of little concern, the minimum- 
phase FIR filter may be a good choice. We can design a filter that has the best 
magnitude characteristics, in the Chebyshev sense, and a minimum phase shift. 
These minimum-phase filters generally have better magnitude characteristics for 
the same length N than do linear-phase filters. The group delay, though 
minimal, is usually far from a constant. For low-pass filters the delay is quite 
small at zero frequency and increases rapidly near the band edge. When a better 
group delay is required, complex approximation techniques can be applied to 
give a good, small, though not exactly constant, group delay with good 
magnitude characteristics. 

One new problem with the complex design of FIR filters is the specification of 
the desired group delay or phase. If too small a delay is requested, the best 
Chebyshev approximation has large errors and the filter is not useful. Generally, 
a delay between one half and three quarters of the delay of the same length 
linear-phase filter is a good choice. The choice of desired delay depends, of 
course, on the band edges specified for the filter. Wide-band filters can have less 
delay, for the same Chebyshev error, than narrow-band filters can. 

The approximation problem for both FIR and IIR filters is solved in one of 
two ways. Either a closed-form, analytic expression is used, possibly with 
suitable transformations, or a numerical optimization procedure is used to solve 
for the coefficients of the filter. One family of closed-form analytical design 
formulas for FIR filters gives an optimal LS error approximation to an ideal 
low-pass filter with a spline or trigonometric function transition region. A 
second family is based on windowing the design of a LS error approximation in 
order to reduce the Chebyshev error at the expense of the squared error. 

Numerical procedures for FIR design may be divided into two categories. 
Methods like frequency sampling and LS error minimization require solving a 
set of linear equations. Other methods, such as linear programming and the 
Remes exchange algorithm, are iterative and generally take more time than the 
frequency-sampling and LS methods. 

Programs are provided in the appendix to design FIR filters using window- 
ing, frequency sampling, and LS-error minimization. A program is also provided 
for the Parks-McClellan algorithm, which designs filters with minimum 
Chebyshev error and equiripple frequency characteristic. It usually takes longer 
to design an FIR filter with an iterative procedure like the Parks-McClellan 
algorithm than it does to design an IIR filter of approximately equivalent 
performance with analytic expressions and transformations. However, a wider 
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range of specifications can be met with the numerical optimization approach 
than with the analytical approach to the approximation problem. As described 
in Chapter 4, FIR filters can be designed to meet arbitrary complex-frequency 
specifications with minimal Chebyshev error by using linear programming. 

The realization or implementation of an FIR filter with fixed-point arithmetic 
is much easier and more trouble free than the implementation of an IIR filter. 
The direct, nonrecursive implementation of the FIR filter where the output is 
calculated as a weighted linear combination of present and past inputs is always 
stable. For filter lengths of up to 100 the coefficients are not very sensitive to 
quantization. The unit-pulse response coefficients can be implemented with 12 
to  16 bits with little degradation of the frequency response. If shorter word 
length is desired, an optimization program is available that will solve the 
approximation problem with quantized coefficients. The coefficients of the filter 
are easily scaled to avoid overflow, and the quantization noise problems are not 
severe when the products of filter coefficients and input samples are accumulated 
in a double word-length register. The only significant difficulty in implementing 
FIR filters is the large amount of memory required to store the present and past 
N values of the input signal for a length-N filter. The FIR filter also has more 
filter coefficients to  store than an IIR filter with similar performance. This 
problem should become less important as memory becomes more readily 
available. Another possible disadvantage of the large number of coefficients in 
the FIR filter arises when the coefficients are changed often, as in adaptive 
filtering applications. 

Long FIR filters can also be efficiently implemented by using special 
hardware, such as array processors, for computing the required inner products. 
The necessary convolution can be implemented by fast convolution techniques 
using the FFT or by table lookup, using distributed arithmetic. 

9.1.2 IIR Digital Filters 

An IIR filter has an infinite-duration unit-pulse response. The transfer function 
of an IIR filter, as described in this book, is a rational function of z - ' :  

This function is also written as a rational function of z: 

Unlike analog filters, where the order of the numerator must be less than or 
equal to the order of the denominator, a digital filter can have N greater than, 
equal to, or less than M. In addition to  the order N - M zero or pole at the 
origin, the filter has M zeros and N poles in the z  plane. 



An IIR filter can generally achieve a sharper transition between band edges 
than an FIR filter can with the same number of coefficients. The reason is that 
the IIR filter has a pole near the edge of the pass band and a nearby zero at the 
edge of stop band. Since an FIR filter cannot have poles (except at the origin), it 
cannot achieve the same sharp cutoff. The closely spaced pole and zero, which 
produce the desired sharp change in magnitude characteristic of the filter, also 
produce a rapid change in phase and phase slope for frequencies near the pole 
and zero. The closely spaced pole and zero lead to a rapid change in group delay 
for frequencies approaching the band edge. It is not possible for an IIR filter to 
have exactly constant group delay for all frequencies. Minimum-phase, low-pass 
IIR filters with sharp transitions between the pass band and stop band typically 
have a small group delay at zero frequency that increases rapidly at frequencies 
near the band edge. 

An IIR filter can have precisely constant magnitude (an all-pass filter). All- 
pass IIR filters can be used as phase or delay equalizers to compensate for the 
delay distortion present in minimum-phase systems. However, all-pass IIR 
equalizers are difficult to design. Recent work has shown that FIR equalizers, 
designed with the techniques described in Chapter 4, can have characteristics 
similar to, if not better than, IIR equalizers. Furthermore, FIR equalizers are 
easier to implement than IIR equalizers. 

Implementing IIR filters with a recursive realization in fixed-point arithmetic 
is much more difficult than the direct, nonrecursive implementation of an FIR 
filter. Much greater care must be taken in the scaling of the filter coefficients. 
When there is an overflow in a recursive filter, large-scale oscillations (limit 
cycles) can occur, which obscure any useful output from the filter. Because of 
internal rounding of the signal variables, small-scale limit cycles can also occur, 
adding a small but annoying noise to the filter output. The design example in 
this book has a small-scale limit cycle. 

Quantization noise can be more of a problem than in nonrecursive filters 
because of the recursive nature of the calculation. The double-length product of 
two numbers must be quantized in order to be fed back in the recursion. The 
frequency response, and even the stability, as determined from the pole 
locations, is sensitive to quantization of the filter coefficients. This sensitivity 
rules against directly implementing the difference equation implied by (9.3). 
Cascade or parallel connections of low-order blocks are better implementations 
for recursive filters. 

An IIR filter has an advantage over an FIR filter in that it generally has 
fewer coefficients than an FIR filter with similar magnitude characteristics, so 
less memory is required to store the coefficients. A more significant memory 
saving occurs because only a few of the recent input values need to be stored, in 
contrast to the FIR case where N input values need to be stored for a length-N 
filter. Even though the IIR filter has an infinite memory-that is, its output 
depends on the infinite past input-the filter memory is stored in the state 
variables of the recursive filter. The memory of the filter arises from the storage 
of past outputs as well as past inputs. 
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Even though the IIR filter has fewer coefficients than an equivalent FIR filter, 
it still may take less time to compute an output sample for the equivalent FIR 
filter. The reason is the regularity of the VLSI structure for implementing the 
nonrecursive filter as compared to the irregular structure required for the 
recursive filter. For example, with the TMS32020 signal piocessor, the nonre- 
cursive calculation requires approximately one fifth of the time per coefficient of 
the recursive calculation. In other words, for the same computing time the FIR 
filter can have approximately five times as many coefficients as an IIR filter. The 
exact relation for computing times depends, of course, on the particular 
programs used to implement the filters. In applications where the coefficients of 
the filter are updated in real time (e.g., adaptive filtering), the advantage of fewer 
coefficients in the IIR filter may be significant. Distributed arithmetic is more 
attractive for IIR filters than for FIR filters because of the lower order. However, 
the use of FFTs for implementing an IIR filter requires a block recursive 
structure and is not as effective as for the FIR filter. 

9.2 DESIGN ENVIRONMENT 

Because of interrelated steps in the approximation and realization parts of the 
filter design process, interactive design programs must be available on a 
computer. The FORTRAN programs in the appendix and/or those available in 
the IEEE Press program book or from commercial sources can provide that 
environment for the approximation problem. The realization problem requires a 
simulation program to analyze the quantization effects in a particular re- 
alization of a filter. The simulator must be specialized for the particular 
hardware or computer implementation; therefore, it is not included in this book. 
Certain simulation programs are available for the TMS320 family of signal 
processors from Texas Instruments, Inc., and others. A fairly general program, 
called DOREDI, for analyzing the effects of finite word-length effects in 
realizations of IIR filters is available in the IEEE Press program book. 





s Appendix 

This appendix contains FORTRAN programs for designing FIR and IIR filters. 
Most of the programs are written with a notation and organization that follows 
the theoretical development in the book. Studying the programs should help 
you understand the theory, and vice versa. They are written to utilize very 
efficient algorithms and formulas, but they do not incorporate all the user- 
friendly input/output characteristics or error-handling capabilities of commer- 
cial products. The exception is the Parks-McClellan program, which has been 
developed over several years. The programs, in general, use a basic structure 
that the user can modify as necessary. 

1. A FORTRAN PROGRAM FOR LINEAR-PHASE 
LOW-PASS FIR FILTER DESIGN USING 
FREQUENCY SAMPLING 

The FORTRAN program is a system for designing a length-N, linear-phase, 
low-pass FIR digital filter with a frequency response that interpolates N 
specified values. These N values are usually samples of a desired continuous- 
frequency response. After the filter is designed, its frequency response is 
calculated for analysis. The basic theory, formulas, variable names, and 
references are chosen to follow the development in Section 3.1. 

The main program starts with a section that takes input specifications from 
the terminal. The length of the desired FIR filter is entered as N. Next follows 
the cutoff frequency or band edge in hertz, where we assume a sampling rate of 
1.0 and N equally spaced frequency samples. The next input distinguishes the 
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two possible sampling schemes described in Section 3.1. Entering 0 for DC 
specifies a sample at w = 0, and entering 1 specifies that the samples are shifted 
one-half interval, so there is no sample at w = 0. A value for K is entered to set 
the number of equally spaced frequencies at which the frequency response is 
evaluated in the analysis section of the program. 

In the next section of the program, the desired frequency-response samples of 
a low-pass filter are loaded into the array A(J) .  These are set to be 1 or 0, 
according to the input specification FP. This section would be changed in order 
to design something other than a simple low-pass filter. 

The actual design of the filter is performed in the D O  15 and D O  21 loops, 
where design formulas (3.4), (3.6), (3. lo), and (3.1 2) are evaluated. The first half of 
the symmetric impulse response is written to the terminal as the coefficients of 
the designed filter. The frequency response of the filter is calculated at K equally 
spaced frequencies by the subroutine FREQ( ), which implements (3.2) and (3.5); 
these values are written to the file fm. If K is set equal to N, the output of the 
frequency-response calculation should give the 1's and 0's that were the input 
samples in the array A(J). 

This program was used to design the filters in Examples 3.1 and 3.2, and a 
modified version was used for Example 3.4. It could have also been used in 
Example 3.3. The input and A(J)-setting sections could easily be modified to  
allow any desired samples to be specified. Because this scheme is an inter- 
polation method, the analysis of the frequency over a fairly large range is 
important for examining the behavior between the sample points. 

As pointed out in Section 3.2.1, this frequency-sampling design program can 
be used to design optimal LS error approximations over L frequency samples by 
designing a length-L filter and symmetrically truncating the impulse response to 
the desired length N. It will give the same results as Program 2 for equally 
spaced samples and no weighting, but it runs faster and has less numerical error. 

FREQUENCY SAMPLING OR INTERPOLATION FOR FIR FILTERS 
TRUNCATION YIELDS OPTIMAL LEAST-SQUARES DESIGN 
DESIGN PROGRAM FOR A LINEAR PHASE LOWPASS FILTER 

FILTER LENGTH AND NO. OF FREQ SAMPLES = N 
BANDEDGE IN HZ = FP, FOR SAMPLING RATE = 1 
FREQ. SAMPLE A1 DC: DC = 0 
NO FREQ. SAMPLE AT DC: DC = 1 
FREQUENCY RESPONSE CALCULATED AT K POINTS 

C.S. BURRUS, RICE UNIVERSITY, JAN 1987 ................................................... - 
REAL X(101), A(101), B(1001) 

C----------------------INpUT------------------------------ 
WRITE (6,100) 

5 WRITE (6,110) 
READ (5,*) N, FP, DC, K 
M = (N+1)/2 
AM = (N+1.0)/2.0 



C------------SET DESIRED FREQ RESPONSE-------------------- 
10 DO 11 J = 1, NP 

A(J) = 1.0 
11 CONTINUE 

DO 12 J = NP+l, M1 
A(J) = 0.0 

12 CONTINUE 
IF (DC.EQ.l) GOT0 18 

-. - -  - 

XT = XT-i ~ ( 1 )  *COS (Q* (AM-J) * (1-1) ) 
14 CONTINUE 

X(J) = 2.0*XT/N 
15 CONTINUE 

GOT0 21 
c------------Typ~ l&2 , NO DC FREQ SAMPLE----------------- 

18 DO 21 J = 1, M 
XT = 0 
DO 20 I = 1, N2 

XT = XT + A (I) *COS (Q* (AM-J) * (1-0.5) ) 
20 CONTINUE 

IF (AM.NE.M) XT = XT + A(M) *COS (3.141592654* (AM-J) ) /2 
X(J) = 2*XT/N . . 

21 CONTINUE 

C--------------------OUTpUT------------------------------- 
WRITE (6,120) (X(J) ,J=l,M) 
CALL FREQ (X, B,N,K) 
OPEN (1,FILE ='fmr) 
REWIND(1) 
DO 50 J = 1, K+l 

F = 0.5*(J-1)/K 
WRITE (1,130) F, ABS(B(J)) 

50 CONTINUE 
100 FORMAT ('FREQUENCY SAMPLING DESIGN OF A LOWPASS FILTER') 
110 FORMAT ('ENTER: N, FP, DC, K') 
120 FORMAT (9F8.5) 
130 FORMAT (5X,F15.8,E15.8) 

GOT0 5 
END 

C-------------------END OF MAIN PROGRAM--------------------- 
SUBROUTINE FREQ (X,A,N, K) 
REAL X(l), A(1) 

C 
Q = 3.141592654/K 
AM = (N+l) *0.5 
M = (N+1)/2 
N2 = N/2 
DO 20 J = 1, K+1 

AT = 0 
IF (AM.EQ.M) AT = 0.5*X(M) 
DO 10 I = 1, N2 

AT = AT + X(1) *COS (Q* (AM-I) * (J-1) ) 
10 CONTINUE 

A(J) = 2*AT 
20 CONTINUE 

RETURN 
END 
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2. A FORTRAN PROGRAM FOR LINEAR-PHASE 
LOW-PASS FIR FILTER DESIGN USING A 
DISCRETE LEAST SQUARED 
ERROR CRITERION 

The FORTRAN program is a system for designing a length-N, linear-phase, 
low-pass FIR digital filter with a frequency response that is a LS error 
approximation to a set of L desired values. These L values are usually samples of 
a desired continuous-frequency response. If L is equal to N, the approximation 
can be exact, and this program gives the same results as a frequency-sampling 
design. After the filter is designed, its frequency response is calculated for 
analysis. The basic theory, formulas, variable names, and references are chosen 
to follow the development in Section 3.2.1. 

The main program starts with a section that takes input specifications from 
the terminal. The length of the desired FIR filter is entered as N. The number of 
frequencies over which 10 calculate the approximation is entered as L, where 
L 2 N. Then follows FP, the cutoff frequency or band edge in hertz, where we 
assume a sampling rate of 1.0 and L equally spaced frequency samples. The next 
input distinguishes the two possible sampling schemes described in Section 3.1. 
Entering 0 for DC specifies a sample at o = 0, and entering 1 specifies that the 
samples are shifted one-half interval, so there is no sample at o = 0. A value for 
K is entered to set the number of frequencies at which the frequency response is 
evaluated in the analysis section of the program. 

In the next section the desired frequency response samples of a low-pass filter 
are loaded into the array A(J). These samples are set to be 1 or 0, according to 
the input specifications FP, DC, and N being even or odd. This section would be 
changed in order to design something other than a simple low-pass filter. 

The next section calculates the frequency-response matrix F defined in (2.25) 
by using (3.2) and (3.5). If L = N, the result is the same as frequency sampling. If 
L > N, (2.25) is overdetermined and F is rectangular. An approximate solution 
to these equations is found by solving the normal equations of (3.19) by solving 
(3.20). However, this program uses the efficient and accurate subroutines 
SQRDC( ) and SQRSL( ) contained in the matrix software system LINPACK. 
These subroutines are covered in reference 7. Their output, which is the solution 
of the normal equations, is the first half of the symmetric impulse response, 
which is written to the terminal as the coefficients of the designed filter. The 
frequency response of the filter is calculated at K equally spaced frequencies by 
the subroutine FREQ( ), which implements (3.2) and (3.5); these values are 
written to the file fm. 

This program provides the basis of a versatile and powerful FIR filter design 
system. At one extreme, for L = N, it designs according to a frequency-sampling 
criterion. At the other extreme, for L >> N, it gives a good approximation to the 
true continuous LS error design used in Programs 3, 4, and 5, yet it allows 
arbitrary ideal specifications. The input section can easily be modified to accept 
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arbitrary input to the array A(J). However, numerical problems may exist for a 
long filter with L >> N. 

The advantage of this program over Program 1 comes from the ability to 
modify it for unequally spaced frequency points by changing the section that 
creates the F matrix. This modification allows us better control of the 
approximation because we can use a denser grid near a discontinuity. We can 
add a weight function according to (3.22), which can also allow greater control 
of the approximation. We can define a transition band by using a small weight in 
the "don't care" transition region, and by using a general expression for the 
frequency-response matrix F, rather than the one for linear phase, we can 
generalize the program to do complex approximation. 

If equally spaced frequency samples and no weights are satisfactory, do not 
use this program. Use Program 1 for a frequency-sampling design with filter 
length L and truncated that result to the desired length N. That will do the same 
thing this program does, but it will be faster and have less numerical roundoff 
error. 

C DISCRETE LEAST SQUARE ERROR FIR FILTER 
C FILTER LENGTH = N 
C NO. OF FREQUENCY SAMPLES = L 
C BANDEDGE IN HZ = FP FOR SAMPLING RATE = 1 
C FREQ. SAMPLE AT DC: DC = 0 
C NO FREO. SAMPLE AT DC: DC = 1 
c FREQUENCY RESPONSE CALCULATED AT K POINTS 
C C.S. BURRUS, RICE UNIVERSITY, JAN 1987 
c---------------------------------------------------------------- 

REAL X(101), A(501), B(1001) 
REAL F (501,101), QAX(101) 

--------------SET PWTERS------------------------------------- 
LDX = 501 
WRITE (6,100) 

5 WRITE (6,110) 
READ (5,*) N, L, FP, DC, K 

LP = L*FP + 1.0 
QJ = 1.0 

IF (DC.EQ.0) GOT0 18 
L2 = LM 
LP = L*FP + 0.5 
QJ = 0.5 

C-------------SET THE DESIRED FREQ RESPONSE--------------------- 
D O 6  J = 1 ,  L 

A(J) = 0.0 
6 CONTINUE 

IF (MOD(N,2) .EQ.O) GOT0 8 
DO 7 J = 1, LP 

A(J) = 1.0 
A(L-J+1) = 1.0 

7 CONTINUE 
GOT0 15 

8 D O 9 J = l , L P  
A(J) = 1.0 
A(L-J+1) =-1.0 

9 CONTINUE 
GOT0 15 



18 DO 10 J = 1, L 
A(J) = 0.0 

10 CONTINUE 
IF (MOD(N.2) .EQ.O) GOT0 12 
A(1) = 1.0 
DO 11 J = 2, LP 

A(J) - 1.0 
A(L-J+2) = 1.0 

11 CONTINUE 
GOT0 15 

12 A(1) = 1.0 
DO 15 J = 2, LP 

A(J) = 1.0 
A(L-J+2) =-1.0 

15 CONTINUE 

- ~ 

QI = Q*?&-I) 
DO 20 J = 1, L 

F(J, I) = 2*COS (QI*(J-QJ)) 
2 0 CONTINUE 
30 CONTINUE 

CALL SQRDC (F, LDX, L, MI QAX, DUM, DUM, 0) 
CALL SQRSL (F, LDX, Lt M, QAXt A, DUMt A, XI DUMt DUMP 100, INFO) 
IF (MOD(N,2) .NE.O) X(M) = 2.0*X(M) 

c----------------------OUTpUT----------------------------------- 

WRITE (6,120) (X(J), J=l,M) 
CALL FREQ (X, B, N, K) 
OPEN (1, FILE =' f m t  ) 
REWIND (1) 
DO 50 J = 1, K+1 

FF = 0.5*(J-1)/K 
WRITE (1,130) FF, ABS (B(J) ) 

50 CONTINUE 
100 FORMAT ('LEAST SQUARE ERROR DESIGN OF A LOWPASS FILTER') 
110 FORMAT ('ENTER: N, L, FP, DC, K') 
120 FORMAT (9F8.5) 
130 FORMAT (5X, F15.6,E15.8) 

GOT0 5 
END 

C------------------END OF MAIN PROGRAM------------------------ 
C 

SUBROUTINE FREQ (X, A, N, K) 
REAL X(l), A(1) 

C 
Q = 3.141592654/K 
AM = (N+l) *0.5 
M = (N+1)/2 
N2 = N/2 
DO 20 J = 1, K+l 

AT = 0 
IF (AM.EQ.M) AT = 0.5*X(M) 
DO 10 I = 1, N2 

AT = AT + X(1) *COS (Q* (AM-I) * (J-I)) 
10 CONTINUE 

A(J) = 2*AT 
20 CONTINUE 

RETURN 
END 
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3. A FORTRAN PROGRAM FOR LINEAR-PHASE LOW-PASS 
FIR FILTER DESIGN USING A LEAST SQUARED 
ERROR CRITERION AND A TRANSITION REGION 

The FORTRAN program is a system for designing a length-N, linear-phase, 
low-pass FIR digital filter with a frequency response that is a LS error 
approximation to an ideal low-pass frequency response with a transition region 
as shown in Fig. 3.lb amd Fig. 3.16. A choice of a P-order spline or a raised 
cosine transition function is given. After the filter is designed, its frequency 
response is calculated for analysis. The basic theory, formulas, variable names, 
and references are chosen to follow the development in Sections 3.2.1 and 3.2.2. 

The main program starts with a section that takes input specifications from 
the terminal. The length of the desired FIR filter is entered as N. Then follows 
FP, the pass-band edge in Hertz and FS, the stop-band edge in hertz; both 
assume a sampling rate of 1.0. Next, an integer T P  is entered to specify the type 
of transition function to be used. Enter 0 for a raised cosine transition function, 1 
for a first-order spline (straight-line) transition function, 2 for a second-order 
spline, and, in general, an integer P for a P-order spline transition function. A 
value for K is entered to set the number of frequencies at which the frequency 
response is evaluated in the analysis section of the program. 

The subroutine LS( ) calculates the impulse response from (3.29) for an ideal 
rectangular low-pass response with a band edge at the average of F P  and FS. 
The subroutine WGT( ) calculates the various weight functions by using (3.32) 
and (3.33), which result from the transition functions, and multiplies them by the 
ideal impulse response to give the actual filter coefficients. The first half of the 
symmetric impulse response is written to the terminal as the coefficients of the 
designed filter. The frequency response of the filter is calculated at K equally 
spaced frequencies by the subroutine FREQ( ), which implements (3.2) and (3.5); 
and these values are written to the file fm. 

This program gives an optimal LS error approximation to the ideal low-pass 
filter with a transition region. It is fast and very accurate, even for large .V. 
because the design is analytical rather than numerical. The transition region 
allows us to control the design by the specifications. The choice of transition 
function and the length-N control the residual approximation error. 

LEAST SQUARE ERROR FIR FILTERS WITH A TRANSITION REGION 
DESIGN PROGRAM FOR A LINEAR PHASE LOWPASS FILTER 
FILTER LENGTH = N 

PASSBAND EDGE IN HERTZ = FP 
STOPBAND EDGE IN HERTZ = FS, FOR SAMPLING RATE = 1 

TRANSITION TYPE = TP: 0. RAISED COSINE. 1. LINEAR, 2. 2ND ORDER, 
3 .  3RD ORDER, 4. 4TH ORDER, ETC.; FP=FS=NO TRANSITION 

FREQUENCY RESPONSE CALCULATED AT K POINTS 
C.S. BURRUS, RICE UNIVERSITY, JAN 1987 ................................................... 
INTEGER TP 
REAL X(101), B(1001) 



C--------------------INpUT SPECIFICATIONS----------------- 
WRITE (6,100) 

7 WRITE 16,110) 
READ (5,;) N; FP, FS, TP, K 
M = (N+1) /2 
FQ = FS - FP 
FR = FS + FP 

C--------------------DESIGN------------------------------ 
CALL LS (X, N, FR, FQ) 
CALL WGT (X, N, TP, FR, PQ) 

C--------------------OUTprn------------------------------ 
WRITE (6,120) (X(J),J=l,M) 
CALL FREQ (X,B,N,K) 
OPEN (1,FILE =Ifme) 
REWIND (1) 
DO 50 J = 1, K+1 

F = 0.5*(J-1)/K 
WRITE (1,130) F, ABS(B(J) ) 

50 CONTINUE 
100 FORMAT ('LEAST SQUARE DESIGN WITH A TRANSITON REGION') 
110 FORMAT ('ENTER: N, FP, FS, TP, K') 
120 FORMAT (9F8.5) 
130 FORMAT (5X,F15.8,E15.8) 

GOT0 7 
END 

C---------------END OF MAIN PROGRAM-------------------- 
L 

SUBROUTINE LS (X, N,FP, FQ) 
REAL X(1) 

C 
P = 3.141592654 
M = (N+1) /2 
AM = (N+1.0)/2.0 
N2 = N/2 
IF (M.EQ.AM) X(M) = FP 
DO 10 J = 1, N2 

Q = P*(J - AM) 
X(J) = (SIN(FP*Q) /Q 

10 CONTINUE 
RETURN 
END 

C------------------mIGHTS----------------------- 
SUBROUTINE WGT (X, N, TP, FP, FQ) 
INTEGER TP 
REAL X(1) 

C 

1 DO 11 J = 1, AM-1~ 
Q1 = Q* (J-AM) /TP 
WT = (SIN(Q1) /Q1) **TP 
X(J) = WT*X(J) 

11 CONTINUE 
RETURN 

C--------------RAISED COSINE--------------------- 
5 DO 15 J = 1, AM-1 

WT = COS (Q* (J-AM) ) 
IF (ABS(WT) .GT.l.OE-6) GOT0 13 . . .  

WT = P/4.0 
GOT0 14 

13 WT = WT/ (1- (2*FQ* (J-AM) ) **2) 
14 X(J) = WT*X(J) 
15 CONTINUE 
7 RETURN 

END 
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c-------------- FREQUENCY RESPONSE------------- 
SUBROUTINE FREQ (X, A, N, K) 
REAL X(1), A(1) 

C 
Q = 3.141592654/K 
AM = (N+1)*0.5 
M = (N+1) /2 
N2 = N/2 
DO 20 J = 1, K+1 

AT = 0 
IF (Al4.EQ.M) AT = 0.5*X(MI 
DO 10 I = 1, N2 

AT = AT + X(1) *COS (Q* (AM-I) * (J-I) ) 
10 CONTINUE 

A(J) = 2*AT 
20 CONTINUE 

RETURN 
END 

4. A FORTRAN PROGRAM FOR LINEAR-PHASE LOW-PASS 
FIR FILTER DESIGN USING A LEAST SQUARED 
ERROR CRITERION AND OPTIONAL WINDOWS 

The FORTRAN program is a system for designing a length-N linear-phase, low- 
pass FIR digital filter with a frequency response that is an LS error approxi- 
mation to an ideal low-pass frequency response. Filters designed with this error 
criterion exhibit a ripple or oscillation in their frequency response, called the 
Gibbs phenomenon. When this oscillation is undesirable, we can use one of five 
window functions to reduce it. After the filter is designed, its frequency response 
is calculated for analysis. The basic theory, formulas, variable names, and 
references are chosen to follow the development in Sections 3.2.1 and 3.2.3.4. 

The main program starts with a section that takes input specifications from 
the terminal. The length of the desired FIR filter is entered as N. Then follows 
FP, the cutoff frequency or band edge in Hertz, where we assume a rate of 1.0. 
Next, an integer T P  is entered to the type of window function used to truncate 
the ideal, infinitely long, impulse response. Enter 0 for a rectangular window 
(simple truncation), 1 for Bartlett, 2 for Hanning, 3 for Hamming, 4 for 
Blackman, or 5 for Kaiser. If the Kaiser window is chosen, a parameter BET 
with values in the range of 2 to 15 must be entered. A value for K is entered to set 
the number of frequencies at which the frequency response is evaluated in the 
analysis section of the program. 

The subroutine LS( ) calculates the ideal impulse response from (3.29). The 
subroutine WIND( ) calculates the various window functions, using (3.40) 
through (3.42), and multiplies them by the ideal impulse response to give the 
actual filter coefficients. The Kaiser window requires calculation of a Bessel 
function, which is done by the FORTRAN function 10 (  ). The first half of the 
symmetric impulse response is written to the terminal as the coefficients of the 
designed filter. The frequency response of the filter is calculated at K equally 
spaced frequencies by the subroutine FREQ( ), which implements (3.2) and (3.5); 
these values are written to the file fm. 
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This program gives an optimal least mean squared error approximation to 
the ideal low-pass filter. It is fast and accurate, even for large N, because design is 
analytical rather than numerical. Unfortunately, therefore, it is not easy to 
modify it to approximate something other than a simple, constant-magnitude 
ideal. The windows give some flexibility, but they destroy the optimality. The 
Kaiser window is probably the most useful tradeoff of ripple and transition 
width. An input section could be added to take ripple and transition width and 
calculate N and BET. 

LEAST SQUARE ERROR AND WINDOWS FOR FIR FILTERS 
DESIGN PROGRAM FOR A LINEAR PHASE LOWPASS FILTER 
FILTER LENGTH = N 
BAND EDGE IN HERTZ = FP, FOR SAMPLING RATE = 1 
WINDOW TYPE: TP = O.RECTANGULAR, l.BARTLETT, 

Z.HANNING, 3.HAMMING, 4.BLACKMAN, 5.KAISER 
KAISER WINDOW PARAMETER = BETA 
FREQUENCY RESPONSE CALCULATED AT K POINTS 

C.S. BURRUS, JAN 1987 

INTEGER TP 
REAL X(101), B(1001) 

C--------------------INpUT SPECIFICATIONS----------------- - 
WRITE (6.100) 

5 WRITE i6;lloi 
READ (5,*) N, FP, TP, K 
M = (N+1) /2 

C--------------------DESIGN------------------------------ 
CALL LS (X,N,FP) 
CALL WIND (X, N, TP) 

C--------------------OUTpuT------------------------------ 
WRITE (6,120) (X(J), J=l,M) 
CALL FREQ (X, B,N,K) 
OPEN (1,FILE = ' f m t  ) 
REWIND (1) 
DO 50 J = 1, K+1 

F = O.5*(J-1) /K 
WRITE (1.130) F. ABS(B(J)) . , ~ .  . . . . .  

50 CONTINUE 
100 FORMAT ('LEAST SQUARE DESIGN WITH WINDOWS' ) 
110 FORMAT ('ENTER: N, FP, TP, Kt) 
120 FORMAT (9F8.5) 
130 FORMAT (5X,F15.8,E15.8) 

GOT0 5 
END 

C---------------END OF MAIN PROGRAM-------------------- 
C 

SUBROUTINE LS (X,N,FP) 
REAL X(1) 

C 
P = 3.141592654 
M = (N+1)/2 
AM = (N+1.0)/2.0 
N2 = N/2 
IF (M.EQ.AM) X(M) = 2.0*FP 
DO 10 J = 1, N2 

Q = P*(J - AM) 
X(J) = (SIN(FP*2*Q) ) /Q 

10 CONTINUE 
RETURN 
END 



C------------------WINDOWS----------------------- 
SUBROUTINE WIND (X,N, TP) 
INTEGER TP 
REAL X(1) 

C 
IF (TP.EQ.0) RETURN 

Q = 3.141592654/AM 
Q1 = 3.141592654/ (AM-I) 
GOT0 (1,2,3,4,5), TP 
RETURN 

1 DO 11 J = 1, AM 
WT = J/AM 
X(J) = WT*X(J) 

11 CONTINUE 
RETURN 

C-----------------HmNING------------------------ 
2 DO 12 J = 1, AM 

WT = 0.5 - 0.5*COS(J*Q) 
X(J) = WT*X(J) 

12 CONTINUE 
RETURN 

C-----------------HAMMING------------------------ 
3 DO 13 J = 1, AM 

WT = 0.54 - 0.46*COS ( (J-1) *Q1) 
X(J) = WT*X(J) 

13 CONTINUE 
RETURN 

C-----------------BLACm------------------------ 
4 DO 14 J = 1, AM 

WT = 0.42 - 0.5*COS (J*Q) + 0.08*COS (2*J*Q) 
X(J) = WT*X(J) 

14 CONTINUE 
RETURN 

C-----------------KAISER------------------------ 
5 PRINT *, ' ENTER BETA' 

READ *,BET 
FIOl = FIO(BET) 
DO 15 J = 1, AM 

ARG = BET*SQRT (1- ( (AM-J) / (AM-1) ) **2) 
WT = FIO (ARG) /FIOl 
X(J) = WT*X(J) 

15 CONTINUE 
RETURN 
END 

FUNCTION-------------------- 
FUNCTION FIO(Z) 
Y = z/2.0 
E = 1.0 

CONTINUE 
PRINT *,'I0 FAILED TO CONVERGE' 
FIO = E . - -  
RETURN - - 

END 
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C-------------------------------------------------- 

SUBROUTINE FREQ (X, A, N, K) 
REAL X(1), A(1) - 

AT = 0 
IF (AM.EQ.M) AT = 0.5*X(M) 
DO 10 I = 1, N2 

AT = AT + X(1) *COS (Q* (AM-I) * (J-1) ) 
10 CONTINUE 

A(J) = 2*AT 
20 CONTINUE 

RETURN 
END 

5. A FORTRAN PROGRAM FOR LINEAR-PHASE 
FIR DIFFERENTIATOR DESIGN 
USING A LEAST SQUARED ERROR CRITERION 

The FORTRAN program is a system for designing a length-N, linear-phase, 
FIR digital differentiator with a frequency response that is an LS error 
approximation to an ideal differentiator frequency response. Filters designed 
with this error criterion exhibit a ripple or oscillation in their frequency 
response, called the Gibb phenomenon, where a discontinuity exists. This 
phenomenon occurs for type 3 filters with an odd N but not for type 4 filters with 
an even N. After the filter is designed, its frequency response is calculated for 
analysis. The basic theory, formulas, variable names, and references are chosen 
to follow the development in Sections 3.2.1 and 3.2.2. 

The main program starts with a section that takes input specifications from 
the terminal. The length of the desired FIR filter is entered as N. A value for K is 
entered to set the number of frequencies at which the frequency response is 
evaluated in the analysis section of the program. 

The program determines if N is odd or even and branches,to the appropriate 
section for design of a type 3 or type 4 filter. If N is odd, the ideal impulse 
response is calculated from (3.30); if it is even, (3.31) is used. The first half of the 
odd-symmetric impulse response is written to the terminal as the coefficients of 
the designed filter. The frequency response of the filter is calculated at K equally 
spaced frequencies by the subroutine FREQ( ), which implements (2.28) and j 
(2.29) or (3.13); these values are written to the file fm. ! 

This program gives an optimal least mean squared error approximation to f 
the ideal differentiator. It is fast and accurate, even for large N, because the 
design is analytical rather than numerical. If a wide-band differentiator is 
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the type 3 differentiator is significant near w = n because of the discontinuity 
that must occur there (see Figs. 2.4 and 3.15). 

If a narrow-band differentiator is desired, a new design formula should be 
derived that combines a differentiator and a filter. If possible, a transition region 
should be included to reduce the Gibbs effect. 

C LEAST SQUARE ERROR FOR FIR DIFFERENTIATOR 
C DESIGN PROGRAM FOR A LINEAR PHASE DIFFERENTIATOR 
C FILTER LENGTH = N 
C TYPE = TP: 3. ODD N, 4. EVEN N 
C FREQUENCY RESPONSE CALCULATED AT K POINTS 
C C.S. BURRUS, JAN 1987 
c--------------------------------------------------------- 

REAL X(1001), B (1001) 
" L-------------------- INPUT SPECIFICATIONS----------------- 

WRITE (6,100) 
5 WRITE (6,110) 

READ (5, * )  N, K 
M = (N+1) /2 
AM = (N+1.0)/2.0 
N2 = N/2 
P = 3.141592654 
IF (M.NE.AM) GOT0 11 

C-------------TYpE 3 ODD N------------------------ 
DO 10 J = 1, M-1 

X(J) = (COS(P*(M-J)))/(M-J) 
10 CONTINUE 

X(M) = 0.0 
GOT0 12 

C-------------TYpE 4 EVEN N----------------------- 
11 DO 12 J = 1, N2 

Q = P*(J - AM) 
X(J) = (SIN(Q) ) / (Q* (J-AM) ) 

12 CONTINUE 
r--------------------~u~pu~------------------------------ 

WRITE (6,120) (X(J),J=l,M) 
CALL FREQ(X,B,N,K) 
OPEN (1,FILE ='fm1) 
REWIND ( 1) 
DO 50 J = 1, K+1 

F = 0.5*(J-1)/K 
WRITE (1,130) F, ABS(B(J)) 

50 CONTINUE 
100 FORMAT ('LEAST SQUARE DESIGN OF A DIFFERENTIATOR') 
110 FORMAT ('ENTER: N, Kt) 
120 FORMAT (9F8.5) 
130 FORMAT (5X,F15.8,E15.8) 

GOT0 5 
END 

c-------------------------------------------------- 
SUBROUTINE FREQ (X, A, N, K) 
REAL X(l), A(1) 

" 

--- . 

DO 10 I = 1, N2 
AT = AT + X(I)*SIN(Q*(AM-I)*(J-I)) 

10 CONTINUE 
A(J) = 2*AT 

20 CONTINUE 
RETURN 
END 
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6. A FORTRAN PROGRAM FOR MULTIBAND 
LINEAR-PHASE FIR DESIGN USING 
THE CHEBYSHEV ERROR CRITERION AND THE 
PARKS-McCLELLAN ALGORITHM 

A listing of a slightly modified version of the program EQFIR, which appeared 
in the IEEE Press book Programs for Digital Signal Processing is included here 
with the permission of the IEEE. It is called the Parks-McClellan algorithm. 
Some modifications have been made in the input and output parts of the 
program so that the input is read from the terminal and the output is stored in a 
file, PM.LST, and written to the screen. 

This program implements the theory described in Section 3.3. The main 
program starts with a section that takes input from the terminal. The prompts 
that appear on the screen are listed and described. 

Enter filter length, type, no. of bands 

The filter length is read in as "nfilt". The three possible filter types (see the 
following discussion) are 

Type 1 Multiple pass-bandlstop-band filter 
Type 2 Differentiator 
Type 3 Hilbert transform filter 

The number of bands is two for a low-pass filter since the transition band 
is not counted. For a bandpass filter with one pass band, the number of 
bands is three: a stop band, the pass band, and the second stop band. 

Enter band edges 

The band edges should be entered in fractions of the sampling frequency in 
ascending order. A low-pass filter has four bandedges: 0.0, the end of the 
pass band, the beginning of the stop band, and 0.5. Bandpass filters have 
correspondingly more band edges. 

Enter desired value in each band 

For a low-pass filter the desired value is 1.0 in the first band and 0.0 in the 
second band. 

Enter weight in each band 

When the weights are equal to 1.0 in all bands, the error will be the same 
for all bands. Since the program minimizes the weighted error, a larger 
weight gives a smaller error. For example, if the pass-band weight is 1.0 
and the stop-band weight is 10.0, the stop-band error will be one tenth as 
large as the pass-band error. 
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The filter type in the program (JTYPE) has a different meaning than that used 
for the word "type" in Section 2.2.1. When JTYPE = 1, the parameter 171 = 0 in 
(3.43). If JTYPE = 1 and the filter length is odd, the program designs a type 1 
filter described in Section 2.2.1. When JTYPE = 2 and the filter length is even, a 
type 2 filter is designed. If JTYPE = 3, the parameter m = 1 in (3.43), and the 
program designs a type 3 filter for odd length or a type 4 filter for even length. 
For JTYPE = 1 and JTYPE = 3, the desired function is a constant in the 
specified bands. The choice JTYPE = 2 was included for the design of 
differentiators where the desired function is linear with a specified slope. When 
JTYPE = 1 or JTYPE = 3, the weight is a constant in the specified bands. 
However, when JTYPE = 2, the weight is inversely proportional to the value of 
the desired function, to give a constant percent error. 

After the filter for Example 3.9 was designed, the following information 
appeared on the screen: 

finite impulse response (fir) 
linear phase digital filter design 

remes exchange algorithm 
bandpass filter 

filter length =21 

band 1 band 2 
lower band edge 0. 0.3700000 

upper band edge 0.3300000 0.5000000 

desired value 1.0000000 0. 

weighting 1.0000000 1.0000000 

deviation 0.0988697 0.0988697 

deviation in db 0.81 89238 - 20.0987320 
. . . . . . . . . . . . . . . . . . . . . . . .  ............................................................. 

""'filter specs are in the file pm.lst***** *..... ~mpulse response is in file r.datW"' 

In applications, such as equalization, when the desired function is not 
constant or linear and the desired weight is not constant or proportional to the 
desired value, the user can write new functions EFF  for the desired function and 
WATE for the special weighting function. 

The examples in Section 3.3.3 were designed with this program. Each 
example illustrates a particular feature in the design of filters using this program. 
Before using this program, read the guidelines in Section 3.3.3. 

It is always a good idea to calculate and plot the frequency response of a filter 
before using it in an application. The filter is optimum in terms of the 
mathematical criteria used in the theory of Chebyshev approximation, but it 
may have exactly the expected frequency response. 

Usually the program will be run several times to get an appropriate filter. The 
formulas for filter length, given in Section 3.3.4, are only approximate starting 
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points. Often the length must be changed and the program run again to meet 
specifications. The choice of weight function is often an iterative procedure as 
well. As described in Section 3.3.1, the maximum value of the product of the 
weight W ( f )  and the error is minimized. A small weight allows larger errors, 
whereas a large weight allows smaller errors. 

A convenient way to use the program is to make up an input file and, in 
UNIX, redirect the input. The input file for Example 3.9 was 

The resulting output file, pm.lst, is 

finite impulse response (fir) 
linear phase digital filter design 

remez exchange algorithm 
bandpass filter 

filter length = 21 

***.*. ~mpulse response""' 
h( 1 )=  0.18255439e-01 =h(21) 
h( 2) = 0.55136755e-01 =h(20) 
h( 3)=-0.40910728e-01 =h(19) 
h( 4)= 0.14930855e-01=h(18) 
h( 5) = 0.27568584e-01 = h(17) 
h( 6) = -0.59407797e-01 = h ( l 6 )  
h( 7 )=  0.44841841e-01=h(15) 
h( 8) = 0.31 902660e-01 =h(14) 
h( 9 )=  -0.14972545e+OO=h(13) 
h(10) = 0.25687239e+OO= h(12) 
h ( l l ) =  0.69994062e+OO=h(ll) 

lower band edge 
upper band edge 
desired value 
weighting 
deviation 
deviation in db 

band 1 
0. 
0.3300000 
1.0000000 
1.0000000 
0.0988697 
0.81 89238 

band 2 
0.3700000 
0.5000000 
0. 
1.0000000 
0.0988697 

- 20.0987320 



c main program: fir linear phase filter design program 
C 
c authors: james h. mcclellan 
c schlumber well services 
c 12125 technology blvd. 
c austin, texas 78759 
C 
c thomas w. parks 
c school of electrical engineering 
c cornell university 
c ithaca, new york 14853 
C 
c lawrence r. rabiner 
c bell laboratories 
c murray hill, new jersey 07974 
C 
c modified for terminal input by t.w. parks 
C 

c input: 
c nfilt-- filter length 
c jtype-- type of filter 
c 1 = multiple passband/stopband filter 
c 2 = differentiator 
c 3 = hilbert transform filter 
c nbands-- number of bands 
C 
c edge(2*nbands)-- array: lower and upper edges for each band 
c with a maximum of 10 bands. 
C 
c fx(nbands)-- desired function array (or desired slope if a 
c differentiator) for each band. 
C 
c wtx(nbands)-- weight function array in each band. for a 
c differentiator, the weight function is inversely 
c proportional to f. 
C 
c sample input data setup: 

10.0,1.0,10.0 
this data specifies a length 32 bandpass filter with 
stopbands 0 to 0.1 and 0.425 to 0.5, and passband from 
0.2 to 0.35 with weighting of 10 in the stopbands and 1 
in the passband. 

the following input data specifies a length 32 fullband 
differentiator with slope 1 and weighting of l/f. 

32,2,1 
0,0.5 
1.0 
1.0 

c----------------------------------------------------------------------- 

C 
common pi2, ad,dev, x, y, grid,des, wt, alpha, iext,nfcns, ngrid 
common /oops/niter,iout 
dimension iext (66) ,ad(66) ,alpha(66) ,x(66) ,y(66) 
dimension h(66),hh(132) 
dimension des (1045) ,grid(1045) ,wt (1045) 
dimension edge(20) ,fx(10) ,wtx(lO),deviat (10) 
double precision pi2,pi 
double precision ad, dev, x, y 
double precision gee,d 
integer bdl, bd2, bd3, bd4 
data bdl,bd2,bd3,bd4/lhb, lha, lhn, lhd/ 
input= 5 



iout= 3 
pi=4 .O*datan(l.OdO) 
pi2=2.0dOO*pi 

C 
c the program is set up for a maximum length of 128, but 
c this upper limit can be changed by redimensioning the 
c arrays iext, ad, alpha, x, y, h to be nfmax/2 + 2. 
c the arrays des, grid, and wt must dimensioned 
c 16 (nfmax/2 + 2) . 
C 

nfmax=128 
100 continue 

open ( 3 ,  file ='pm.lst' ) 
open(4,file ='r.dat') 
jtype=O 

C 
c program input section 
C 

write(*,104) 
104 format(3xr1Enter filter length, cype, no. of bands') 

read *, nf ilt, jtype, nbands 
if (nfilt.eq.0)stop 
if(nfilt.le.nfmax.or.nfilt.ge.3) go to 115 
call error 
stop 

115 if (nbands .le. 0) nbands=l 

C 
c grid density is assumed to be 16 

C 
lgrid=16 
jb=2 *nbands 
write (* ,  120) 

120 format (3x,'Enter band edges') 
read *, (edge(j), j-1, jb) 
write(*, 121) 

121 format(3x,'Enter desired value in each band') 
read *, (fx(i),i=l,nbands) 
write (* ,  122) - - 

122 format (3x,'Enter weight in each band') 
read *. (wtx( j) , j=l,nbands) 
if (jtype.gt .O .and. jt~pe.le.3) go to 125 
call error 
stop 

125 neg=l 
if (jtype.eq.1) neg=O 
nodd=nfilt/2 
noddznfilt-2*nodd 
nfcns=nfilt/2 
if(nodd.eq.l.and.neg.eq.0) nfcns-nfcns+l 

C 
c set up the dense grid. the number of points in the grid 
c is (filter length + 1) *grid density/2 
C 

grid(l)=edge (1) 
delf=lgrid*nfcns 
delf=O. 5/delf 
if (neg.eq.O) go to 135 
if (edge(1) .lt.delf) grid(l)=delf 

135 continue 
j-1 
1=1 
lband=l 

14 0 f up=edge ( l+l ) 
145 temp=grid( j) 

C 
c calculate the desired magnitude response and the weight 
c function on the grid 
C 

des (j) =ef f (temp, fx, wtx, lband, jtype) 



wt (j) =wate (temp, fx, wtx, lband, jtype) 
j= j+l 
grid ( j) =temp+delf 
if (grid( j) .gt .£up) go to 150 
go to 145 

150 grid( j-l)=fup 
des (j-1) =eff (fup, fx, wtx, lband, jtype) 
wt (j-1) =wate (fup, fx, wtx, lband, jtype) 
lband=lband+l 
1=1+2 
if(lband.gt.nbands) go to 160 
grid ( j ) =edge ( 1) 
go to 140 

160 ngrid=j-1 
if (neg.ne .nodd) go to 165 
if (grid (ngrid) .gt . (0.5-delf) ) ngrid=ngrid-1 

165 continue 

C 
c set up a new approximation problem which is equivalent 
c to the original problem 

C 
if (neg) 170,170,180 

170 if (nodd.eq.1) go to 200 
do 175 j=l,ngrid 
change=dcos (pi*grid ( j) ) 
des ( j) =des ( j) /change 

175 wt (j) =wt ( j) *change 
go to 200- 

180 if (nodd.eq.1) go to 190 
do 185 j=l, ngrid 
change=dsin(pi*grid(j)) 
des ( j) =des ( j) /change 

185 wt (j)=wt (j) *change 
qo to 200 

190 do 195 j=l,ngrid 
change=dsin (pi2*grid ( j) ) 
des ( j ) =des ( j) /change 

195 wt(j)=wt(j)*change 
C 
c initial guess for the extremal frequencies--equally 
c spaced along the grid 

xt=j-1 
210 iext(j)=xt*temp+l.O 

iext (nf cns+l) =ngrid 

C 
c call the remes exchange algorithm to do the approximation 
c problem 
C 

call remes 
C 
c calculate the impulse response. 
C 

if (neg) 300,300,320 
300 if (nodd.eq.O) go to 310 

do 305 j=l,nml 
nzmj=nz- j 

305 h( j)=O.S*alpha(nzmj) 
h (nfcns)=alpha (1) 



h(nfcns)=0.5*a1pha(l)tOO25*alpha(2) 
go to 350 

320 if (nodd.eq.O) go to 330 
h(l)=0.25*alpha(nfcns) 
h(2)=0.25*alpha (nml) 
do 325 j=3,nml 
nzmj=nz- j 
nf3j=nfcns+3-j 

325 h( j)=0.25* (alpha (nzmj)-alpha (nf3j)) 
h(nfcns)=0.5*alpha(l) -0.25*alpha (3) 
h (nz) =O. 0 
go to 350 

330 h(l)=0.25*alpha(nfcns) 
do 335 j=Z,nml 
nzmj=nz- j 
nfZj=nfcns+Z-j 

335 h(j)=0.25*(alpha(nzmj)-alpha(nf2j)) 
h (nfcns)=0.5*alpha(l) -0.25*alpha (2) 

C 

c program output sect ion. 
L 

c since iout=3, the output is written to file 'pm.lstf 
350 write (iout, 360) 
360 format (lhl, 70 (lh*) /15x,29hfinite impulse response (fir) / 

113x,34hlinear phase digital filter design/ 
217x,24hremes exchange algorithm) 
if( jtype.eq. 1) write(iout, 365) 

365 format (22x, 15hbandpass filter/) 
if (jtype.eq.2) write (iout, 370) 

370 format (22x, 14hdifferentiator/) 
if( jtype.eq.3) write(iout,375) 

375 format (20x, 19hhilbert transformer/) 
write (iout, 378) nfilt 

378 format (20x,l6hfilter length = ,i3/) 
c for screen output, the impulse response is notwritten 

if (iout .eq. 6) go to 457 
write(iout,380) 

380 format(lSx,28h***** impulse response *****) 
do 381 j=l,nfcns 
k=nfiltjl-j 
if (neg.eq.O) write(iout,382) j,h(j) ,k 
if (neg.eq. 1) write (iout, 383) j, h ( j )  , k 

381 continue 
382 format (l3x,2hh (, i2,4h) = ,e15.8,5h = h (, i3,lh) ) 
383 fomat(l3x,Zhh(,i2,4h) = ,e15.8,6h = -h(,i3, lh)) 

if (neg.eq. 1. and.nodd.eq. 1) write (iout, 384) nz 
384 format (13x,Zhh(,i2,8h) = 0.0) 

C 

c now to write impulse response to file 'r.datl 
c write the first half of the response 

do 785 i=l,nfcns 
hh(i)=h(i) 

785 continue 
C 

if (neg.eq.O .and.nodd.eq.O) then 
c here neg=O and nodd=O for bandpass even length filter 
c nfcns=nfilt/2 

do 786 n=l,nfcns 
hh (nfcns+n) =h (nfcns-n+l) 

786 continue 
do 787 i-l,nfcns*2 
write (4,*) hh(i) 

787 continue 
C 

else if (neg.eq.O .and.nodd.eq. 1) then 
c here neg=0 and nodd=l for bandpass odd length filter 
c nfcns=nfilt/2 + 1 

do 788 n=l,nfcns-1 
hh (nf cns+n) =h (nfcns-n) 



788 continue 
do 789 i=l,nfcns*2-I 
write (4, * )  hh (i) 

7 8 9 continue 

C 

else if(neg.eq.l.and.nodd.eq.0) then 
c neg=l for diff and hilbert, nodd=O for even length 

do 800 n=l,nfcns 
hh (nf cns+n) =-h (nf cns-n+l) 

800 continue 
do 801 i=l,nfcns*2 
write(4, * )  hh(i) 

801 continue 

C 
else if(neg.eq.l.and.nodd.eq.1) then 

c neg=l for diff and hilbert, nodd=l for odd length 
h (nf cns+l) =0 

do 802 n=l,nfcns 
hh (nfcns+n+l) =-h (nfcns-n+l) 

802 continue 
do 803 i=l,nfcns*2+1 
write (4, * )  hh (i) 

803 continue 
end if 

457 do 450 k=l,nbands,4 
kup=k+3 
if(kup.gt.nbands) kup=nbands 
write (iout, 385) (bdltbd2,bd3,bd4, j, j=k,kup) 

385 format (24x, 4 (4a1, i3,7x) 
write (iout, 390) (edge (2*j-l) , j=k,kup) 

390 format(2x,l5hlower band edge,5f14.7) 
write(iout, 395) (edge (2*j), j=k, kup) 

395 format (2x,l5hupper band edge,5f14.7) 
if (jtype.ne.2) write(iout,400) (fx(j), j=k,kup) 

400 format(2x,l3hdesired value,2x,5f14.7) 
if (jtype.eq.2) write (iout, 405) (fx( j), j=k, kup) 

405 format (2x, 13hdesired slope,2x, 5f14.7) 
write (iout, 410) (wtx( j) , j=k, kup) 

410 format (2x, ghweighting, 6x,5£14.7) 
do 420 j=k,kup 

420 deviat (j) =dev/wtx( j) 
write(iout, 425) (deviat (j) , j=k, kup) 

425 format (2x, ghdeviation, 6x, 5f 14.7) 
if(jtype.ne.1) go to 450 
do 430 j=k,kup 

430 deviat (j)=20 .O*aloglO (deviat (j) +fx( j) ) 
write (iout, 435) (deviat (j) , j=k, kup) 

435 format(2~,15hdeviation in db,5f14.7) 
450 continue 

do 452 j=l,nz 
ix=iext ( j) 

452 grid ( j) =grid (ix) 

c extremal frequencies not written out in this version 
c write(iout, 455) (grid( j), j=l,nz) 

455 format(/2~,47hextremal frequencies--maxima of the error curve/ 
1 (2x,5£12.7)) 

c write (iout, 460) 
460 format (lx,70 (lh*) / )  

if (iout.eq.6) go to 461 
iout=6 
go to 350 

461 write(*,460) 
write(*, 462) 

462 format(lOx,45h*****filter specs are in the file pm.lst*****/) 
458 write (*, 459) 
459 format(lOx,45h******impulse response is in file r.dat******/) 

stop 
end 



C----------------------------------------------------------------------- 

c  f u n c t i o n :  e f f  
c  f u n c t i o n  t o  c a l c u l a t e  t h e  d e s i r e d  magnitude response  
c  a s  a  f u n c t i o n  of f requency.  
c  an  a r b i t r a r y  f u n c t i o n  of f requency can be 
c  approximated i f  t h e  u s e r  r e p l a c e s  t h i s  f u n c t i o n  
c  wi th  t h e  a p p r o p r i a t e  code t o  e v a l u a t e  t h e  i d e a l  
c  magnitude. n o t e  t h a t  t h e  parameter  f r e q  i s  t h e  
c  va lue  of  normal ized f requency needed f o r  e v a l u a t i o n .  
C----------------------------------------------------------------------- 

C 
f u n c t i o n  e f  f  ( f r e q ,  f x ,  wtx, lband, j t ype )  
dimension f x ( 5 ) , w t x ( 5 )  
i f  ( j t y p e . e q . 2 )  go t o  1 
e f  f  =f x  ( lband)  
r e t u r n  

1 e f  f = f x  ( lband)  *f r e q  
r e t u r n  
end 

C 

C--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

c  f u n c t i o n :  wate 
c  f u n c t i o n  t o  c a l c u l a t e  t h e  weight f u n c t i o n  a s  a  f u n c t i o n  
c  of f r equency .  s i m i l a r  t o  t h e  f u n c t i o n  e f f ,  t h i s  f u n c t i o n  can 
c  be  r e p l a c e d  by a  u s e r - w r i t t e n  r o u t i n e  t o  c a l c u l a t e  any 
c  d e s i r e d  weight ing f u n c t i o n .  
C--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

C 

f u n c t i o n  wate ( f r e q ,  fx ,  wtx, lband, j t ype )  
dimension f x ( 5 ) ,  w tx (5 )  
i f  ( j t y p e . e q . 2 )  go t o  1 
wate=wtx ( lband)  
r e t u r n  

1 i f  ( fx (1band)  . l t . 0 . 0 0 0 1 )  go t o  2  
wate=wtx ( lband)  / f  r e q  
r e t u r n  

2  wate=wtx ( lband)  
r e t u r n  
end 

C 

C----------------------------------------------------------------------- 

c  subrou t ine :  e r r o r  
c  t h i s  r o u t i n e  w r i t e s  an  e r r o r  message i f  an 
c  e r r o r  h a s  been d e t e c t e d  i n  t h e  inpu t  d a t a .  

C 

s u b r o u t i n e  e r r o r  
common / o o p s / n i t e r ,  i o u t  
w r i t e  ( i o u t ,  1) 

1 format(44h ************ e r r o r  i n  i n p u t  d a t a  * * * * * * * * * * )  
r e t u r n  
end 

C 

C----------------------------------------------------------------------- 

c  subrou t ine :  remes 
c  t h i s  s u b r o u t i n e  implements t h e  remes exchange a l g o r i t h m  
c  f o r  t h e  weighted chebyshev approximation of a  cont inuous  
c  f u n c t i o n  wi th  a  sum of c o s i n e s .  i n p u t s  t o  t h e  subrou t ine  
c  a r e  a  dense  g r i d  which r e p l a c e s  t h e  f requency a x i s ,  t h e  
c  d e s i r e d  f u n c t i o n  on t h i s  g r i d ,  t h e  weight f u n c t i o n  on t h e  
c  g r i d ,  t h e  number of cos ines ,  and an i n i t i a l  guess  of t h e  
c  ext remal  f r equenc ie s .  t h e  program minimizes t h e  chebyshev 
c  e r r o r  by determining t h e  b e s t  l o c a t i o n  of t h e  ex t r ema l  
c  f r e q u e n c i e s  ( p o i n t s  of maximum e r r o r )  and then  c a l c u l a t e s  
c  t h e  c o e f f i c i e n t s  of t h e  b e s t  approximat ion.  
c----------------------------------------------------------------------- 
C 

s u b r o u t i n e  remes 
common p i2 ,  ad,dev, x, y , g r i d ,  des ,  w t ,  a lpha ,  i e x t ,  n fcns ,  n g r i d  



common /oops/niter, iout 
dimension iext(66) ,ad(66),alpha(66),~(66),~(66) 
dimension des(1045) ,grid(1045) ,wt (1045) 
dimension a(66) ,p(65) ,q(65) 
double precision pi2, dnum, dden, dtemp, a,p, q 
double precision dk,dak 
double precision ad, dev, x, Y 
double precision gee,d 

C 
c the program allows a maximum number of iterations of 25 
C 

itrmax=25 
devl=-1 .O 
nz=nfcns+l 
nzz=nfcns+2 
niter=O 

100 continue 
iext (nzz) =ngrid+l 
niter=niter+l 
if (niter.gt .itrmax) go to 400 
do 110 j=l,nz 
jxt=iext ( j) 
dtemp=grid(jxt) 
dtemp=dcos (dtemp*pi2) 

110 x(j)=dtemp 
jet=(nfcns-1) /15+1 
do 120 j=l,nz 

120 ad(j)=d(j,nz, jet) 
dnum=O . 0 
dden=O .0 
k=l 
do 130 j=l,nz 
l=iext ( j ) 
dtemp=ad( j) *des (1) 
dnum=dnum+dtemp 
dtemp=float (k) *ad( j) /wt (1) 
dden=dden+dtemp 

130 k=-k 
dev=dnum/dden 

c write (iout, 131) dev 
c intermeditate deviations not written in this version 
131 format (lx, 12hdeviation = , f 12.9) 

nu=l 
if (dev.gt.0.0) nu=-1 
dev=-f loat (nu) *dev 
k=nu 
do 140 j=l,nz 
l=iext ( j ) 
dtemp=float (k) *dev/wt (1) 
y (j)=des (1) +dtemp 

140 k=-k 
if(dev.gt.dev1) go to 150 
call ouch 
go to 400 

150 devl=dev 
jchnge=O 
kl=iext (1) 
knz=iext (nz) 
klow=O 
nut=-nu 
j=1 

C 

c search for the extremal frequencies of the best 
c approximation 



nut=-nut 
if (j .eq.2) yl=comp 
comp=dev 
if (l.ge. kup) go to 220 
err=gee (1,nz) 
err= (err-des (1) ) *wt (1) 
dtemp=float(nut)*err-comp 
if(dtemp.le.0.0) go to 220 
comp=float (nut) *err 

210 1=1+1 
if (1.ge.kup) go to 215 
err=gee (1,nz) 
err= (err-des (1) *wt (1) 
dtemp-f loat (nut) *err-comp 
if (dtemp.le. 0.0) go to 215 
comp=float (nut) *err 
go to 210 

215 iext (j)=l-1 
j=j+l 
klow=l-1 
jchnge=jchnge+l 
go to 200 

220 1=1-1 
225 1=1-1 

if (1.le.klow) go to 250 
err=gee (1,nz) 
err= (err-des (1) ) *wt (1) 
dtemp=f loat (nut) *err-comp 
if(dtemp.gt.0.0) go to 230 
if (jchnge.le.0) go to 225 
go to 260 

230 comp-f loat (nut) *err 
235 1=1-1 

if (1.le.klow) go to 240 
arr=gee (1,nz) 
err=(err-des (1) ) *wt (1) 
dtemp=float (nut) *err-comp 
if(dtemp.le.0.0) go to 240 
comp=f loat (nut) *err 
go to 235 

240 klow=iext ( j) 
iext ( j) =l+l 
j= j+l 
jchnge=jchnge+l 
go to 200 

250 l=iext (j) +l 

err=gee (1,nz) 
err= (err-des (1) ) *wt (1) 
dtemp-f loat (nut) *err-comp 
if(dtemp.le.0.0) go to 255 
comp=f loat (nut) *err 

j=j+l 
go to 200 

300 if (j.gt.nzz) go to 320 
if(kl.gt.iext(1)) kl=iext(l) 
if (knz. lt . iext (nz) ) knz=iext (nz) 



err=gee (1,nz) 
err=(err-des (1) ) *wt (1) 
dtemp=f loat (nut) *err-comp 
if (dtemp.le.0.0) go to 310 
comp=f loat (nut) *err 
j=nzz 
go to 210 

315 luck=6 
go to 325 

320 if (1uck.gt . 9 )  go to 350 
if (comp.gt. yl) yl=comp 
kl=iext (nzz) 

325 l=ngrid+l 
klow=knz 
nut=-nut1 
comp=yl* (1.00001) 

330 1=1-1 
if(l.le.klow) go to 340 
err=gee (1, nz) 
err=(err-des (1) ) *wt (1) 
dtemp=f loat (nut) *err-comp 
if (dtemp.le.0.0) go to 330 
j=nzz 
comp=f loat (nut) *err 
luck=luck+lO 
go to 235 

340 if (luck.eq.6) go to 370 
do 345 j=l, nfcns 
nzzmj=nzz-j 
nzmj=nz- j 

345 iext (nzzmj) =iext (nzmj) 
iext (1) =kl 
go to 100 

350 kn=iext (nzz) 
do 360 j=l,nfcns 

360 iext (j)=iext (j+l) 
iext (nz) =kn 
go to 100 

370 if (jchnge.gt.0) go to 100 
C 
c calculation of the coefficients of the best approximation 
c using the inverse discrete fourier transform 
C 

400 continue 
nml=nfcns-1 
fsh=l.Oe-06 
gtemp=grid (1) 
x (nzz) =-2.0 
cn=2 *nf cns-1 
delf=l.O/cn 
1=1 
kkk=O 
if (grid(1) .lt.O.Ol.and.grid(ngrid) .gt.0.49) kkk=l 
if (nf cns . le .3) kkk=l 
if (kkk.eq.1) go to 405 
dtemp=dcos (pi2*grid (1) ) 
dnum=dcos (pi2*grid (ngrid) ) 
aa=2. O/ (dtemp-dnum) 
bb=- (dtemp+dnum) / (dtemp-dnum) 

405 continue 
do 430 j=l,nfcns 
ft=j-1 
ft=ft*delf 
xt=dcos (pi2 *ft) 
if (kkk.eq.1) go to 410 
xt= (xt-bb) /aa 
xt1=sqrt (1.0-xt*xt) 
ft=atan2 (xt1,xt) /pi2 

410 xe=x(l) 



if (xt .gt.xe) go to 420 
if ( (xe-xt) . lt .fsh) go to 415 
1=1+1 
go to 410 

415 a(j)=y(l) 
go-to- 425 

420 if ( (xt-xe) .lt .fsh) go to 415 
grid (1) =ft 
a(j)=gee(l,nz) 

425 continue 
if (1.gt. 1) l=l-1 

430 continue 
grid (1) =gternp 
dden=pi2/cn 
do 510 j=l,nfcns 
dternp=O . 0 
dnurn= j - 1 
dnurn=dnurn*dden 
if(nrnl.lt.1) go to 505 
do 500 k=l,nrnl 
dak=a (k+l) 
dk=k 

5 0 0 dternp=dtemp+dak*dcos (dnum*dk) 
505 dternp=2.O*dtemp+a(l) 
510 alpha(j)=dtemp 

do 550 j=2, nfcns 
550 alpha(j)=2.0*alpha(j)/cn 

alpha (1) =alpha (1) /cn 
if (kkk.eq.1) go to 545 
p (1) =2.0*alpha (nfcns) *bb+alpha (nml) 
p (2) =2.0*aa*alpha (nfcns) 
q(l) =alpha (nfcns-2) -alpha (nfcns) 
do 540 j=2,nml 
if (j .lt .nrnl) go to 515 
aa=0 .5*aa 
bb=0 .5*bb 

515 continue 
p(j+l)=O.O 
do 520 k=l, j 
a (k) =p (k) 

520 p(k)=2.0*bb*a (k) 
p(2)=p(2) +a (1) *2 .O*aa 

jpl= j+l 
do 530 k=3, jpl 

530 p (k) =p (k) +aa*a (k-1) 
if (j .eq.nml), go to 540 
do 535 k=l,1 

535 q(k)=-a (k) 
nflj=nfcns-1-j 
q(l)=q(l)+alpha(nflj) 

540 continue 
do 543 j=l,nfcns 

543 alpha(j)=p(j) 
545 continue 

if (nfcns.gt .3) return 
alpha (nfcns+l)=O .0 
alpha (nf cns+2) =O. 0 
return 
end 

C 
c----------------------------------------------------------------------- 

c function: d 
c function to calculate the lagrange interpolation 
c coefficients for use in the function gee. 
c----------------------------------------------------------------------- 

C 



double precision function d(k,n,m) 
common pi2, ad, dev, x, y, grid, des, wt, alpha, iext, nfcns, ngrid 
dimension iext(66),ad(66),alpha(66),~(66),~(66) 
dimension des(1045) ,grid(1045) ,wt (1045) 
double precision ad, dev, x, y 
double precision q 
double precision pi2 
d=1.0 
q=x (k) 
do 3 l=l,m 
do 2 j=l,n,m 
if (j-k) 1,2,1 

1 d=2.0*d*(q-x(j)) 
2 continue 
3 continue 
d=l. O/d 
return 
end 

C 

c function: gee 
c function to evaluate the frequency response using the 
c lagrange interpolation formula in the barycentric form 

C 
double precision function gee(k,n) 
common pi2, ad, dev, x, y, grid, des, wt, alpha, iext, nfcns,ngrid 
dimension iext (66) ,ad(66) ,alpha(66) ,x(66) ,y(66) 
dimension des(1045) ,grid(1045) ,wt (1045) 
double precision p, c, d, xf 
double precision pi2 
double precision ad, dev, x, y 
p=o .o 
xf=grid (k) 
xf=dcos (pi2*xf) 
d=O .O 
do 1 j=l,n 
c=xf-x (j) 
c=ad(j)/c 
d=d+c 

1 p=p+c*y(j) 
gee=p/d 
return 
end 

C 
C----------------------------------------------------------------------- 

c subroutine: ouch 
c writes an error message when the algorithm fails to 
c converge. there seem to be two conditions under which 
c the algorithm fails to converge: (1) the initial 
c guess for the extremal frequencies is so poor that 
c the exchange iteration cannot get started, or 
c (2) near the termination of a correct design, 
c the deviation decreases due to rounding errors 
c and the program stops. in this latter case the 
c filter design is probably acceptable, but should 
c be checked by computing a frequency response. 

C----------------------------------------------------------------------- 

C 
subroutine ouch 
common /oops/niter,iout 
write (iout, 1) niter 

1 format(44h * * * * * * * * * * * *  failure to converge **********/  
l4lhOorobable cause is machine roundina error/ 
223h0humber of iterations =, i4/ 
339hOif the number of iterations exceeds 3,/ 
450hOthe design may be correct, but should be verified) 
return 
end 



302 Appendix 

7-8 FORTRAN PROGRAMS FOR CHEBYSHEV AND LEAST 
SQUARED COMPLEX APPROXIMATION, SPECIAI-IZED FOR 
BANDPASS, DIFFERENTIATION, AND HILBERT 
TRANSFORMATION FILTERS WITH REDUCED DELAY 

Program 7 is intended to minimize the maximum magnitude of the complex 
frequency response errors on a fine grid of frequencys for a length-N FIR filter 
with real coefficients. In the past bands, the desired frequency response has a 
constant magnitude for band pass and hilbert filters and a linear magnitude for 
differentiators. The desired phase is linear with a slope determined from the 
desired delay which is entered from the keyboard. 

In Program 8 the sum of the squared magnitudes of complex frequency- 
response errors on a fine grid of frequencies is minimized in this program for a 
length-N FIR filter with real coefficients. In the pass band the desired function 
has a constant magnitude and a linear phase with a slope determined by the 
value of the desired delay, which is entered from the keyboard. Frequency bands 
can be separated by transition transition regions, and different weights can be 
used in various bands. The filter is not restricted to have exactly linear phase. 
Rather, the desired group delay is specified so that filters may be designed with 
less delay than the linear-phase filters. 

The input for these programs is patterned after Program 6, the Parks- 
McClellan program. The input and output for program 8 are listed below with 
corresponding explanations: (They are similar for Program 7.) 

Enter filter length, type, no. of bands 

These entries are the same as for Program 6. The possible filter types are 

Type 1 Multiple pass-bandlstop-band filter 
Type 2 Differentiator 
Type 3 Hilbert transform filter 

Enter desired group delay 

This parameter determines the slope of the desired phase function. The 
delay is in normalized units. A desired delay of M corresponds to a delay 
of M samples. 

Enter band edges (normalized in Hz). 

The band edges are entered in ascending order as in Program 6. 

Enter desired value of function in each band. 

The usual values are 1.0 in the pass band and 0.0 in the stop band. 
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Enter weights for each band. 

Just as in Program 6, the weighted error is minimized. A larger weight gives 
a smaller error. 

To control group delay error, enter 1, else 0. 

When a 1 is entered, the group delay error is reduced according to the 
weight entered in response to the next request. 

Enter weight for group delay. 

A larger weight gives a smaller group delay. 

To control phase error, enter 1, else 0. 

Since the group delay is determined by the phase slope, this additional 
weight is necessary if the phase error is important. 

After the parameters are entered, the following outputs appear on the screen 
for a reduced delay version of example 3.9: 

design in progress 
info= 0 

~htte7mpulsvtcrspbMSe.CRtr..***.....*...* *"****.*.......**..........*.*...."**"........" 
digital filter design 

least square approximation 
bandpass filter 

filter length =21 

band 1 band 2 
lower band edge 0. 0.370000000 
upper band edge 0.330000000 0.500000000 
desired value 1.000000000 0. 
weighting 1 .OOOOOOOOO 1 .OOOOOOOOO 

band 

.............................................................................................. 

desired group delay 8.000000000 
weight of group delay 1.000000000 
*........*.*.*...**..*.....****.**.....*..*****..*...*..........*.*....*..*......****......... 

""'filter specs are in the file I.lst""* 
"filter impulse response is in file r.dat" 

Program 8 uses the approach described in Section 3.2. First, a set of linear 
equations representing the desired filter characteristics is derived. These 
equations are then "solved" in the LS by the standard LINPACK QR 
decomposition subroutines DQRDC and DQRSL. 



304 Appendix 

The details of the design are written out to the file named l.lst, and the 
impulse response alone is written to the file r.dat. Both the magnitude and delay 
(or phase) of the resulting response should be checked to see if they meet 
specifications, since this program minimizes the sum of the squared magnitudes 
of the complex frequency response errors. 

The input parameters shown were used to design a length-21 filter with the 
same band edges as the linear-phase filter in Example 3.9, but with a desired 
delay of 8 samples, rather than the 10-sample delay resulting with exactly linear 
phase. 

The output of the design program, found in the file l.lst is 

finite impulse response (fir) 
digital filter design 

least square approximation 
bandpass filter 

filter length =21 

*..*.. impulse response""' 
h( 1 ) = -0.26436972e -01 
h( 2) = 0.11478931e-01 
h( 3) = 0.25567593e-01 
h( 4) = -0.57302951 e -01 
h( 5) = 0.45461 593e -01 
h( 6) = 0.29440641e-01 
h( 7) = -0.1 4849445e+00 
h( 8) = 0.25806873e + 00 
h( 9) = 0.69688821 e+00 
h(10) = 0.25809250e + 00 
h ( l l ) =  -0.14683524e+OO 
h(12) = 0.27705259e-01 
h(13) = 0.45791 51 2e-01 
h(14) = -0.555931 80e-01 
h(15) = 0.22229100e-01 
h(16) = 0.1 5402893e-01 
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band 1 band 2 
lower band edge 0. 0.370000000 

upper band edge 0.330000000 0.500000000 

desired value 1.000000000 0. 

weighting 1.000000000 1 .OOOOOOOOO 
.............................................................................................. 

desired group delay 8,000000000 
weight of group delay 1.000000000 
*.***....*...*********........******..**.*****....*.*.*...........******......*********....... 

Several modifications of these programs can be made. The input specification 
section of the program can be bypassed, and an arbitrary complex-valued 
desired frequency response can be used. This modification would be useful for 
designing equalizer filters. 

Program 7 

This program is intended to minimize the maximum magnitude of the 
complex frequency response errors on a fine grid of frequencies for a length-N 
FIR filter with real coefficients. In the passbands, the desired frequency response 
has a constant magnitude for bandpass and Hilbert filters and a linear 
magnitude for differentiators. The desired phase is linear with a slope deter- 
mined from the desired delay which is entered from the keyboard. 
C PROGRAM FOR THE DESIGN OF FIR FILTERS I N  THE COMPLEX DOMAIN 

C 

c a u t h o r s :  X .  Chen 
c Department of  Engineer ing  
c U n i v e r s i t y  of  Denver 
c Denver, CO 80208 
C 

c T. W .  P a r k s  
c School of  E l e c t r i c a l  Engineer ing  
c C o r n e l l  U n i v e r s i t y  
c I t h a c a ,  NY 14853 

c See t h e  p a p e r  "Design of  FIR f i l t e r s  i n  t h e  complex domain" by 
c X .  Chen and T. W .  Parks ,  t o  appear  i n  IEEE-ASSP. 

s o l v e  min W(f)  l f  ( z )  - h ( 0 )  - h ( l )  * ( l / z )  - h ( 2 )  * ( l / z * * 2 )  - . . . . 
where f  ( z ( i )  ) =  u ( z ( i ) )  t j  v ( z  (i)) f o r  i = 1 , 2 , .  . . . . . . ,m 
and a l l  t h e  h ( k )  a r e  r e a l  

normal e q u a t i o n  i s  AH=B 
A is  s t o r e d  a s  A '  

m d i s c r e t e  p o i n t s  of f r e q u e n c i e s  f  
p  d i s c r e t e  p o i n t s  o f  a u x i l i a r y  v a r i a b l e  t h e t a  

t ( j ) = ( j - l ) / Z p  
t h e t a ( j ) = p i z * t ( j )  j = l , .  . . , p  



n length of the filter 
A= ( a (s,k) ) is m*p+l by n+3 

a(s,k) - W(f (i)) cos(pi2 (k-l)f (i) - pi2 t(j) ) 
where s=i+ (j-l)m 

i=l, ...., m 
j=l, ...., p 
k=l, . . .,n 

a(s,k) = 0 for k=n+l,n+Z,n+3 
and for s=rnp+l 

H= transpose of ( h(l), h(2), . . . . , h(n)) 
B= transpose of (b (1) , . . . . . . .b (m) , 0) 

b(s)=W(fi) * (u(i) *cos (theta (j)) - v(i) *sin(theta(j) ) )  

Uses Algorithm 495 by I. Barrodale and C. Phillips 
in ACM Trans. math. Software, v.1, pp.264-270,1975. 

Additional columns may be added to control error(s) of phase 
or/and group delay. 

implicit real*8 (a-h, 0-2) 
double precision a (67,8193) ,b(8193) ,h(67) 
double precision grid(1024) ,des(1024) ,wt (1024) ,u(1024) ,v(l024) 
double precision edge (20) ,fx(lO), wtx(10), wgd,deviat (10) 
character*6 ffile 
character*l iout, igd, iph 

pi=3.141592653589793dO 
pi2=pi*2 .dO 
.......................................... 
program input section 
(64*16=1024, 64*16*8=8192) 

continue 
if ile=6 
write (6, 90) 
format('1f printer output desired on this terminal1,/, 
'enter y else n. (If n entered, prompts will still I , / ,  

'appear on this terminal) ' ) 
read (5,96) iout 
format (all 
it (iout .eq. 'n') then 

if ile=8 
write (6,92) 
format('Enter the desired file name (6 characters only) . I , / )  

read (5,921) ffile 
format (a6) 
open (8, f ile=f file) 
rewind 8 
write (6,94) ffile 
format ('Screen output now in file ',a6,/) 
end if 

write (6,104) 
format('Type filter length, type, bands, grid density') 
read(5,105) nfilt, jtype,nbands, lgrid 
format (8il0) 
if (nfilt .gt .nfmax.or.nfilt .lt .l) call error 
if (nbands . le. 0) nbands=l 
write (6,106) 



format ('Type auxiliary grid density') 
read(5,105) lp 

main grid density is assumed to be 8 unless specified 
otherwise 

if (1grid.le.O) lgrid=8 
auxilary grid density is assumed to be 8 unless specified 
otherwise 

if (lp.le.0) lp=8 
write(6,lll) 
format ('Type desired group delay') 
read(5,llO) slop 
slop=slop*piZ 
jb=2 %bands 
write (6,109) 
format ( 'Type band edges. ' ) 
read(5,llO) (edge(j), j=1, jb) 
format (8fl0.0) 
write(6,107) 
format('Type desired value of function in each band.') 
read(5,llO) (fx( j), j=l,nbands) 
write (6,108) 
format('Type weights for each band.') 
read(5,llO) (wtx(j), j=l,nbands) 
write(6,115) 
format ('If error in group delay is desired to control', /, 
'enter y else n.') 
read (5,113) igd 
format (al) 
if (igd.eq.'nl) go to 122 
write (6,124) 
format ('Type weight for group delay. ' 1  

read(5,llO) wgd 
write(6,123) 
format('1f error in phase is desired to control1,/, 
'enter y else n. ' ) 
read(5.113) iph 
if (iph.eq.'nr) go to 120 
write (6,117) 
format ('Type weight for phase error') 
read(5,llO) wph 
if (jtype.eq.0) call error 

set up the dense grid. the number of points in the grid 
is (filter length t l)*grid density 

grid(l)=edge (1) 
delf=lgrid*nfilt 
delf=O .5/delf 
if(edge(1) .lt.delf) grid(l)=delf 
continue 
j=1 
1=1 
lband=l 
f up=edge (1t1) 
temp=grid ( j) 

calculate the desired frequency response and the weight 
function on the grid 



call eff (temp,slop,fx,wtx,lband, jtype,des( j) ,u(j) ,v(j)) 
wt (j) =wate (temp, fx, wtx, lband, jtype) 
j=j+l 
grid ( j) =temp+delf 
if (grid( j) .gt .fup) go to 150 
go to 145 

150 klk=j-1 
grid(k1k) =£up 
call eff (fup,slop, fx,wtx, lband, jtype,des(klk) ,u(klk) ,v(klk) ) 
wt (j-l)=wate(fup, fx, wtx, lband, jtype) 
lband=lband+l 
1=1+2 
if (1band.gt .ribands) go to 160 
grid( j)=edge(l) 
go to 140 

160 ngrid=j-1 
c if (grid(ngrid) .gt . (0.5-delf) ) ngrid=ngrid-1 
C ............................................ 

derive linear equations for the complex approximation 
C 

do 300 j=l,lp 
theta=pi* (j-1) /dfloat (lp) 
tc=dcos (theta) 
ts=dsin(theta) 
do 280 i=l,ngrid 

mt=i+ (j-1) *ngrid 
b(mt) = u(i) *tc-v(i)*ts 
b(mt) = wt(i)*b(mt) 
do 260 k=l,nfilt 

temp=pi2* (k-1) *grid(i) -theta 
a(k,mt)=wt (i) *dcos (temp) 

continue 

c o ~ t  inue 
continue 

if(igd.eq.'nl) go to 320 
............................................. 
adding constraints on the errors in group delay 

delay=slop/pi2 
do 310 i=l,ngrid 

if (des (i) .lt.l.e-5) go to 310 
ms=ms+l 
b(ms) = O.dO 
theta=-slop*grid(i) 
if(jtype.eq.2) theta=theta+pi/Z.dO 
if(jtype.eq.3) theta=theta-pi/2.dO 
do 305 k=l,nfilt 

temp=pi2* (k-1) *grid(i) +theta 
a (k,ma)=wgd* (k-l.dO-delay) *dcos (temp) 

continue 
continue 



adding constraints on the error in phase 

theta=-pi/2.d0 
do 330 i=l,ngrid 

if (des (i) . lt. 1.e-5) go to 330 
ms=ms+l 
b(ms) = O.dO 
do 325 k=l,nfilt 

temp=pi2* (k-1) *grid(i) +theta 
a(k,ms)=wph*dsin(temp) 

continue 
continue 

if(ms.gt.8192) call error 
ndim=67 
mdim=8193 
tol=l.d-15 
relerr=O.dO 

call cheb (ms,nfilt,mdim,ndim,a, b,tol, relerr, h,nrank, resmax, iter, ncode) 
................................................ 
program output section. 

write(ifile, 360) 
format (70 (lh*) //25x, 'finite impulse response (fir) ' /  
20x,'quasi-linear phase digital filter design1/ 
25x,'complex approximation'/ 
30x, 'algorithm 495'/) 
if (jtype.eq. 1) write(ifile,365) 
format (30x, 'bandpass filter1/) 
if (jtype.eq.2) write(ifi1e. 370) 
format (30x, 'differentiator'/) 
if (jtype.eq.3) write(ifi1e. 375) 
format (30x, 'hilbert transformer1/) 

write (ifile, 378) nfilt 
format(30x,'filter length = ',i3/) 
write(ifile, 380) 
format(22x,'***** impulse response * * * * * I )  

do 381 j=l,nfilt 
write (ifile, 382) j,h (j) 
continue 
format (20x, 'h(',i3, ' )  = ',e15.8) 
do 450 k=l,nbands,4 
kup=k+3 
if(kup.gt.nbands) kup=nbands 
write (ifile, 385) (j, j=k, kup) 
format (/24x, 4 ('band', i3,8x)) 
write (ifile, 390) (edge (2* j-1) , j=k, kup) 
format (2x, 'lower band edge', 5f15.9) 
write(ifile, 395) (edge(Z*j), j=k, kup) 
format (Zx, 'upper band edge1,5f15.9) 
if (jtype.ne.2) write(ifile, 400) (fx(j), j=k,kup) 
format (Zx, 'desired value', 2x, 5f15.9) 
if (jtype.eq.2) write(ifile,405) (fx(j), j=k,kup) 
format (Zx, 'desired magn. slope',2x,Sf15.9) 
write(ifile, 410) (wtx( j) , j=k, kup) 



format (Zx, 'weighting', 6x, 5f 15.9) 
do 412 j-k,kup 

deviat ( j) =resmax/wtx ( j) 
if (fx(j) .gt.0.001 .and. jtype.eq.2) deviat(j)=deviat(j)/Z. 

continue 
write(ifile, 414) (deviat (j), j=k, kup) 
format (Zx, 'deviation', 6x, 5f15.9) 
do 416 j=k,kup 

deviat (j) =20.dO*dloglO (deviat (j) +fx( j) ) 
write (ifile, 418) (deviat ( j )  , j=k, kup) 
format (2x, 'deviation in dB1,5f15.9) 
write (ifile, 419) 
if (igd.eq.'n1) go to 470 
write (ifile, 408) wgd 
format (2x. 'weight of group delay', f15.9) 
devgd=resmax/wgd 
write(ifile, 406) devgd 
fonnat (2x. 'error of group delay', lx, fl5.9) 
if (iph.eq.'nl) go to 480 
write(ifi1e. 471) wph 
format (2x. 'weight of phase error1,f15. 9) 
devph=resmax/wph 
write (ifile, 472) devph 
format (2x, 'error of phase', 6x.fl5.9) 
slop=slop/pi2 
write(ifile, 407) slop 
format (Zx, 'desired group delay', 2x, f15.9) 
write(ifile, 419) 
format (Zx, 66 (lh-) ) 
write (if ile, 420) lgrid 
format (2x. 'grid density', 2x. i7) 
write(ifile,422) lp 
format (2x, 'auxiliary grid', 2x. i6) 
write (ifile, 425) iter 
format (2x, 'iterations', 6x, i5) 
write(ifi1e. 430) ncode 
format (2x. 'exit code', 7x. i5) 
continue 

write (ifile, 460) 
format ( / ,  70 (lh*) / )  

close (8) 
stop 
end 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

subroutine ef f (temp, slop, fx, wtx, lband, jtype, des, u, v) 

function to calculate the desired frequency response 
as a function of frequency. 

implicit double precision (a-h, 0-2) 
dimension fx(10) ,wtx(10) 
if (jtype.eq.2) go to 2 
if (jtype.eq.3) go to 3 
t=-temp*slop 
des=fx (lband) 
u=des*dcos (t) 
v=des*dsin (t) 
return 



t=temp*slop 
des=fx(lband)*temp*2.dO*3.141592653589793dO 
u=des*dsin (t) 
v=des*dcos (t) 
return 

des=f x (lband) 
if (des.1t.l.d-5) go to 4 
t=-temp*slop 
u=des*dsin (t) 
v=-des*dcos (t) 
return 

u=O .dO 
v=O .dO 
return 
end 

function ~ a t e  (temp, fx, wtx, lband, jtype) 

function to calculate the weight function as a function 
of frequency. 

implicit double precision (a-h, 0-2) 
dimension fx(5), wtx(5) 
if (jtype.eq.2) go to 1 
wate=wtx (lband) 
return 

if (fx(1band) .lt.0.0001) go to 2 
wate=wtx (band) /temp 
return 

wate-wtx (lband) 
return 
end 

subroutine error 
write (ifile, 1) 
format(' ************  error in input data * * * * * * * * * * ' )  
stop . 
end 



Program 8 
c main program: fir least-square design program 
C 
c authors: x. chen and t-w. parks 
c department of electrical and computer engineering 
c rice university 
c houston, texas 77251 
C 
c input: 
c nfilt-- filter length 
C 
c jtype-- type of filter 
c 1 - multiple passband/stopband filter 
c 2 - differentiator 
c 3 - Hilbert transform filter 
C 
c nbands-- number of bands 
C 
c lgrid-- grid density set to 8 unless otherwise specified 
C 
c edge(2fnbands)-- bandedge array, lower and uppef edges for 
c each band with a maximui of 10 bands. 
C 
c fx(nbands)-- desired function array for each band. 
C 
c wtx(nbands)-- weight function array in each band. 
C 
c slope-- desired group delay 
,- - 
c wgd-- weight for group delay error 
c 

wph-- weight for phase error 

sample data setup: 
32,1,3 
15.5 
0.0,0.1,0.2,0.35,0.425,0.5 
0.0,1.0,0.0 
10.0,1.0,10.0 

n 
this data specifies a length 32 bandpass filter with 
desired group delay of 15.5, 
stopbands 0 to 0.1 and 0.425 to 0.5, and passband from 
0.2 to 0.35 with a weight on the error magnitude-squared of 10 
in the stopbands and 1 in the passband. the group delay is 
weighted by 10.0 and the phase error is not directly controlled 

- 
implicit real*8 (a-h, 0-2) 
double precision a(4200,64), b(4200) ,h(64) 
double precision work(4200) ,qy(4200) ,qty (4200) ,ah(4200) 
double precision qraux (64) ,eor (4200) 
double precision grid(1025) ,des(1025) ,wt (1025) ,u(1025) ,~(1025) 
double precision edge(20) ,fx(10) ,wtx(10) 
lnteger jpvt (64) 

c program input section 

C 

nfmax=64 
100 continue 



write (*, 104) 
format (3x, 'Enter filter length, type, no. of bands') 
read(*,*) nfilt, jtype,nbands 
if(nfilt.gt.nfmax.or.nfilt.lt.3) call error 

main grid density is assumed to be 16 unless specified 
otherwise 

write ( * ,  111) 
format(3x,'Enter desired group delay') 
read ( * ,  * )  slope 
slope=slope*pi2 
jb=Z*nbands 
write(*, 109) 
format (3xfEnter band edges (normalized in Hz.) . ' )  
read(*, * )  (edqe(j) ,j=l, jb) . . .  - 

write (*,  107) 
format(3x,'Enter desired value of function in each band.') 
read(*,*) (fx(j), j=l,nbands) 
write(*, 108) 
format(3x,'Enter weights for each band.') 
read(*,*) (wtx(j), j=l,nbands) 
write ( * ,  115) 
format(3x,'To control group delay error enter 1, else 0.') 
read (*,*)igd 
if (igd.eq.0) go to 122 
write (*, 114) 
format(3x,'Enter weight for group delay.') 
read(*, * )  wgd 
write ( * ,  123) 
format(3x,'To control phase error enter 1, else 0.') 
read(*,*) iph 
if (iph.eq.O) go to 120 
write (*, 117) 
format (3x, 'Enter weight for phase error' ) 
read(*,*) wph 
if (jtype.eq.0) call error 
write ( * ,  121) 
format (3x, 'design in progress') 

set up the dense grid. the number of points in the grid 
is filter length * grid density (lgrid) 

grid (1) =edge (1 ) 
delf=lgrid*nfilt 
delf=0.5/delf 
if (edge(1) .lt .delf) grid(l)=delf 
continue 
j=1 
1=1 
lband=l 
fup=edge (l+l) 
temp=grid( j) 

calculate the desired frequency response and the weight 
function on the grid 

call eff (temp,slope,fx,wtx,lband, jtype,des (j) ,u(j) ,v(j)) 
wt (j) =wate(temp, fx, wtx, lband, jtype) 
j=j+l 
arid (i) =temu+delf 



klk= j-1 
grid(klk)=fup 
call eff (fup,slope,fx,wtx,lband, jtype,des (klk) ,u(klk) ,v(klk)) 
wt (j-l)=wate (fup,fx,wtx,lband, jtype) 
lband=lband+l 
1=1+2 
if(lband.gt.nbands) go to 160 
grid( j)=edge(l) 
go to 140 
ngrid= j-1 
if (grid(ngrid) .gt . (0.5-delf) ) ngrid=ngrid-1 

derive linear equations 

do 300 j=1,2 
theta=pi* (j-1) /2.d0 
tc=dcos (theta) 
ts=dsin (theta) 
do 280 i=l,ngrid 

mt=i+ ( j-1) *ngrid 
b (mt) = u (i) *tc-v (i) *ts 
b(mt) = wt (i)*b(mt) 
do 260 k-1,nfilt 

temp=pi2* (k-1) *grid (i) -theta 
a (mt,k)=wt (i) *dcos (temp) 

continue 
continue 

continue 

adding constraint on the error of group delay 

ms=ms+l 
b(ms) = O.dO 
theta=-slope*grid(i) 
if (jtype.eq. 2) theta=theta+pi/2 .dO 
if(jtype.eq.3) theta=theta-pi/2.d0 
do 305 k=l,nfilt 

temp=pi2* (k-1) *grid (i) +theta 
a (ms, k)=wgd* (k-1 .do-delay) *dcos (temp) 

continue 
continue 

adding phase error constraint 

do 325 k=l,nfilt 
temp=pi2* (k-1) *grid (i) +theta 
a (ms, k) =wphfdsin (temp) 

continue 
continue 



C 

340 if (ms.gt -4699) call error 

call dqrdc (a, 4200,ms,nfilt,qraux, jpvt,work,O) 
inf o=l 
call dqrsl(a,4200,m~,nfilt,qra~x,b,qy,qty,h,eor,ah,110,inf0) 

C 
open (9, file='errorl) 
rewind (9) 
write (9,342) (eor(i), i=l,ms) 

342 format (10x,e15.6) 
close (9) 
write(*, 343) info 

343 format (lox, 'info=', i5) 
if(info.ne.0) stop 

C 

c program output section 
C 

c first the impulse response is written to file 'r.datl 
C 

open (9, file=' r.datl ) 
rewind (9) 
do 345 i=l,nfilt 
write (9, * )  h (i) 

345 continue 
close(9) 

C 

C 

c the output is written to file 'l.lstl then to the screen 
C 

350 write (iout, 360) 
360 format (lx, 70 (lh*) /22x, 29hfinite impulse response (fir) / 

125x,21hdigital filter design/ 
223x,26hleast square approximation) 

if (jtype.eq. 1) write (iout, 365) 
365 format(28x,'bandpass filter'/) 

if (jtype.eq.2) write(iout,370) 
370 fonnat (28x, 'differentiator1/) 

if (jtype.eq. 3) write (iout, 375) 
375 format (28x, ' hilbert transformerr/) 

write (iout, 378) nfilt 
378 format (25x, ' filter length = ' , i3/) 
c for screen output, the impulse response is not written 

if (iout.eq.6) go to 457 
write(iout, 380) 

380 format(20x,'***** impulse response * * * * * '  ) 
do 381 j=l,nfilt 
write(iout,382) j,h(j) 

381 continue 
382 format (20x,'h(',i3,') = ',e15.8) 
457 do 450 k=l,nbands,4 

kup=k+3 
if(kup.gt.nbands) kup=nbands 
write(iout,38>) (1, j=k, kup) 

385 format (/24x, 4 ('band', 13,8x) ) 
write (iout, 390) (edge (2* j-1) , j=k, kup) 

390 fonnat (2x, 'lower band edge', Sf 15.9) 
write (iout, 395) (edge (2* j) , j=k, kup) 

395 fonnat (Zx, 'upper band edge1,5f15.9) 
if (jtype.ne.2) write (iout, 400) (fx( j) , j=k,kup) 

400 format (2x, 'desired value', 2x, 5f15.9) 
if (jtype.eq.2) write(iout, 405) (fx( j), j=k, kup) 

405 format(2x, 'magn. slope ',2x, 5f15.9) 
write (iout, 410) (wtx( j) , j=k, kup) 

410 format (2x, 'weighting', 6x, Sf15.9) 



write (iout, 419) 
write (iout, 407) delay 
format (2x, 'desired group delay', 2x, f 15.9) 
if(igd.eq.0) go to 470 
write (iout, 408) wgd 
format (2x,'weight of group delay', fl5.9) 
if (iph.eq.0) go to 450 
write (iout, 471) wph 
format (2x, ' weight of phase error' , f 15.9) 
continue 
write (iout, 460) 
format (2x, 66 (lh-) ) 
format (/,70 (lh*) / )  
if (iout.eq.6) go to 461 
iout=6 
go to 350 
write (*, 462) 
format(lOx,44h*****filter specs are in the file l.lst*****/) 
write (*,  463) 
format (lox, 44h**filter impulse response is in file r .dat**/) 

stop 
end 

subroutine eff (temp,slope, fx, wtx, lband, jtype,des,u,v) 

function to calculate the desired frequency response 
as a function of frequency. 

implicit double precision(a-h,o-2) 
dimension fx(10) ,wtx(lO) 
if (jtype.eq.2) go to 2 
if (jtype.eq.3) go to 3 
t=-temp*slope 
des=f x (lband) 
u=des *dcos (t ) 
v=des*dsin (t) 
return 

return 
des=f x (lband) 
if (des.lt.1.d-5) go to 4 
t=-temp*slope 
u=des*dsin (t) 
v=-des *dcos (t) 
return 
u=O .dO 
v=O .dO 
return 
end 
................................ 

function wate (temp, fx, wtx, lband, jtype) 

function to calculate the weight function as a function 
of frequency. 

implicit double precision(a-h,o-2) 
dimension fx(5) ,wtx(5) 
if (jtype.eq.2) go to 1 
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wate=wtx (lband) 
return 

1 i f  (fx(1band) . l t . 0 . 0 0 0 1 )  go t o  2 
wate=wtx (lband) /temp 
return 

2 wate=wtx (lband) 
return 
end 

subroutine error  
w r i t e ( * , l )  

1 format ( I  * * * * * * * * * * * *  error  i n  input data * * * * * * * * * * '  ) 
s t o p  
end 

9. A FORTRAN PROGRAM FOR IIR FILTER DESIGN 
USING BUITERWORTH- CHEBYSHEV- AND 
ELLIPTIC FUNCTION APPROXIMATIONS 

The FORTRAN program is for designing digital and analog low-pass filters 
based on the classical Butterworth, Chebyshev I and 11, and elliptic function 
approximations. These methods are magnitude approximations and produce 
minimum-phase filters. The basic theory, formulas, variable names, and re- 
ferences are chosen to follow the development in Sections 7.2 and 7.3. 

The main program starts with a section that takes input specifications from 
the terminal. subroutine DFR( ) calculates the frequency response of the 
designed filter at a specified number of equally spaced points and writes them to 
a file named fm. The number of frequencies to be evaluated is first entered. Next, 
a choice is made between the four basic approximations: Butterworth, Cheby- 
shev I or 11, and elliptic function. An input is requested to determine whether a 
low-pass, high-pass, bandpass, or band-rejection filter is desired. Then a choice 
between analog and digital filter design is made. If the choice is digital, the 
bilinear transformation is used, and the sampling rate must be entered. If an 
elliptic filter was not chosen, the order is entered next. The pass-band and or 
stop-band edges are entered in hertz; the maximum allowed pass-band ripple 
and/or the micimum allowed stop-band attenuation are entered in positive dB. 
Remember that for IIR filters, the pass-band ripple is defined as the total 
difference between the maximum and the minimum frequency responses over 
the pass band. This definition is in contrast to the FIR case. where the ripple is 
the difference between the maximum (or minimum) and the ideal responses. 

The band edges are converted from Hertz to radians. Then if a digital filter is 
chosen, the frequencies are prewarped according to (7.1 12) by the PREWARP( ) 
function to the appropriate analog prototype values. If a low-pass frequency 
response was not chosen, the band edges W P  and/or WS of the prototype low 
pass are calculated from the entered specifications by (7.97). (7.98), and (7.100). 

The pole and zero locations for the B~tterworth and Chebyshev I and I1 are 
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calculated in the subroutine ROOTS1. Because the filter coefficients are real, the 
poles and zeros occur in complex conjugate pairs. The program calculates only 
one of the complex pair. It uses (7.11) for the Butterworth, (7.31) for the 
Chebyshev, and (7.47) and (7.48) for the Chebyshev I1 in the D O  15 loop. For the 
Chebyshev I and I1 the parameter E from (7.19) is calculated from (7.36) and then 
used to calculate v0  by (7.29). The Butterworth roots are the foundation of this 
subroutine. If a Chebyshev filter is desired, these roots are modified by the 
hyperbolic functions of t.,. If a Chebyshev I1 filter is desired, these roots are 
"inverted" and the zero locations are calculated in the indented section at label 
11. Note that the root locations are scaled to the proper location by the WP or 
WS band-edge frequencies. Also note the special case that must be considered 
for an odd order, which always has a single real root. 

The pole and zero locations for the elliptic function filter are calculated in the 
subroutine ROOTS2. The parameter E in (7.58) is calculated by (7.90). The order 
N is next determined from (7.93), which requires the calculation of four complete 
elliptic integrals. The modulus k  is calculated from (7.92) and scaled to give the 
desired pass-band edge by WP. The complementary modulus k' is calculated 

I 

from k  by (7.92). The second modulus k , ,  defined in (7.68), is calculated from ? 
(7.89) and its complement k; from (7.91). The complete elliptic integrals are 
calculated by the FORTRAN function CEI( ), which uses the arithmetic- 
geometric mean (AGM) implemented by the very efficient algorithm in pro- f -: 
cedure cell, page 86 of B ~ l r i s c h . ~ ~  The order is calculated from (7.93). At this 
point the approach in method A of Section 7.2.8 is taken, which calculates a new 
k ,  to satisfy (7.71). This calculation is done in the function FK( ) by using a ratio 
of the power series expansions 16.33.7 and 16.38.5 on page 579 of reference 21. 
This approach is also taken in reference 23 and gives the maximum attenuation 
in the stop band. At this point the program could easily be modified to take the 
approach of paragraph B or C to minimize the pass-band ripple or the transition 
bandwidth. 

From the various parameters calculated from the input specifications, tl, is 
computed from (7.82) and requires an inverse elliptic tangent function (elliptic 
integral of the first kind). This calculation is performed by the AGM procedure 
ell on page 85 of reference 22 in the FORTRAN function ARCSC( ). The elliptic 
sine, cosine, and dn functions are next calculated by the subroutine ELP( ) 
which uses the sncndn procedure on page 89 of reference 22. In the DO 15 loop 
the zero locations are calculated from (7.79), and the pole locations from (7.84). 
These are scaled by WP to give the proper pass-band and stop-band band edges. 

After the root locations for the prototype low-pass analog filter are 
calculated, the frequency transformations of (7.99) or (7.101) are made in 
subroutine FREQXFM( ) if the desired filter is a high-pass, bandpass, or band- 
rejection filter. The bandpass and band-rejection transformations double the 
order of the prototype filter. 

Next, the root locations for the prewarped prototype analog filter are 
transformed to the digital filter root locations by the bilinear transformation 
described in Section 7.3.2. It is done by the subroutine BLT( ), which uses 
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(7.106). The zero and pole locations are displayed on the terminal by the 
subroutine PRNT( ). The root locations are converted into second-order 
cascade section parameters by the subroutine CASCAD( ). If the order is odd, 
there is one first order section. The rule for ordering the sections for the low-pass 
filter has the first section with the pole(s) and zero(s) farthest from the unit circle 
and nearest the real axis in the z plane and progresses to the last section with the 
poles nearest the unit circle and the zeros nearest those poles. That seems to give 
reasonable quantization and scaling performance. The ordering and pairing for 
the bandpass and band-rejection cases must be worked out separately. The 
frequency response of the filter is calculated from these cascade parameters in 
subroutine DFR( ), and the response is written to the file "fm" by the subroutine 
VIEW( ). 

This program is intended to provide the basis for a flexible optimal filter 
design system as well as to illustrate the implementation of the theory in 
Sections 7.2 and 7.3. The numerical algorithms, mainly from reference 22, are the 
most accurate and efficient known to the authors. No approximations other 
than those necessary in the elliptic function algorithms are used. The structure of 
the program gives the user considerable control over the design of a filter, and it 
can be modified to fully implement the optimal design properties of the theory. 

The input and output are primitive and may need to be customized by the 
user. If it is desired to specify gains and band edges rather than the order for the 
Butterworth and both Chebyshev filters, the equations for calculating order in 
(7.15), (7.38), and (7.54) can be added to the input section. For more control over 
elliptic function filter design, options can be added to allow a choice of methods 
A, B, or C of Section 7.2.8. 

Some applications require the impulse-invariant method of converting the 
analog prototype into a digital one. The techniques of Section 7.3.1 could be 
added as an option to the bilinear transformation. If the parallel structures of 
Section 8.1.4 are preferred, a subroutine for calculating the residues of the poles 
could be added to evaluate the parallel structure coefficients. If analog filter 
design is desired, everything is calculated in the program; only an output section 
is needed. For some exacting applications, double-precision arithmetic must be 
incorporated, testing for convergence in the elliptic function algorithms made 
more stringent, and array sizes enlarged. The programs are also written in a style 
that allows easy conversion to other languages. 

C THIS IS A IIR FILTER DESIGN PROGRAM 
C FOR BUTTERWORTH, CHEBYSHEV, CHEBYSHEV 11, & ELLIPTIC 
C FOR LOWPASS, HIGHPASS, BANDPASS, AND BANDREJECT RESPONSES 
C ANALOG AND DIGITAL FILTERS USING THE BLT 
C PASS AND STOPBAND EDGES ARE IN HERTZ FOR A SAMPLING 
C RATE OF 1. MAXIMUM PASSBAND RIPPLE AND MINIMUM 
C STOPBAND ATTENUATION ARE IN POSITIVE DB. 
C C. S. BURRUS, RICE UNIVERSITY, JAN 1987 c------------------------------------------------------------------ 

DIMENSION PR(20), PI(201, ZR(201, ZI(20) 
DIMENSION Bl(20) ,B2(20) ,A1(20) ,A2(20) 
DIMENSION FM(530) 
COMMON /PARM/R1,R2,WP,WSrN2,N,SR,KA,KAD,KOD,KF 
COMMON /ROOT/PR,PI,ZR,ZI 



C---------INPUT SPECIFICATIONS, PREWARPING, AND PREFREQXFRMING------- 
PRINT *,'ENTER NUMBER OF FREQS TO DISPLAY' 

READ *, KK 
10 PRINT *,'ENTER 1 FOR BW, 2 FOR CHEBY ,3 FOR ICHEBY, 4 FOR ELL' 

READ *, KA 
PRINT *,'ENTER 1 FOR LOWPASS, 2 FOR HP, 3 FOR BP, OR 4 FOR BR' 

READ *. KF 
PRINT * , I  ENTER 1 FOR ANALOG, 2 FOR DIGITAL' 

READ *,KAD 
TP = 6.283185307179586 

IF (KAD.EQ.l) GOT0 12 
PRINT *,'ENTER SAMPLE RATE' 

READ *,SR 
12 IF (KA.EQ.4) GOT0 20 

PRINT *,'ENTER THE ORDER' 
READ *,N 

IF (KF.GE.3) GOT0 15 
PRINT *,'ENTER THE BAND EDGE IN UN-NORMALIZED HZ' 

READ *,FP 
WP = PREWRP (TP*FP) 
IF (KF.EQ.2) W P  = l.O/WP 
IF (KA.EQ.l) GOT0 30 

PRINT *,'ENTER PASSBAND RIPPLE OR STOPBAND ATT IN POSITIVE DB' 
READ *, R1 
IF (KA.EQ.3) WS = WP 
GOT0 30 -.-- - -  

15 PRINT *,'ENTER THE LOWER 6 UPPER BAND EDGES IN HERTZ' 
READ *.Fl.F2 
wl ~= P~EWRP(TP*FI) 
W2 = PREWRP (TP*F2) 
WO = SQRT (Wl*W2) 
WP = (W2*W2-W0*W0) /W2 
IF (KF.EQ.4) WP = 1/WP 
IF (KA.EQ.l) GOT0 30 

PRINT *,'ENTER PASSBAND RIPPLE OR STOPBAND ATT IN + DB' 
READ *,R1 
IF (KA.EQ.3) WS = WP 
GOT0 30 

20 IF (KF.GE.3) GOTO25 

PRINT *,'ENTER PASS AND STOPBAND EDGES IN UN-NORMALIZED HZ' 
READ *,FP,FS 
WP = PREWRP (TP*FP) 
WS = PREWRP fTP*FSI 

PRINT  ENTER PASSBAND RIPPLE AND STOPBAND ATTENUATION IN +DB' 
READ *,Rl,R2 
GOT0 35 

25 PRINT *,'ENTER Fl,F2,F3,F4 FOR BP OR BR FREQS' 
READ *,FlnF2,F3,F4 
W1 = PREWRP(TP*Fl) 
W2 = PREWRP (TP*F2) 
W3 = PREWRP (TP*F3) 
W4 = PREWRP(TP*F4) 
WO = SQRT(W3*W2) 
WP = (W3*W3-W0*W0) /W3 
WS = (W4*W4-Wo*Wo) /W4 
WST= (WO*WO-Wl*Wl) /W1 
IF (WST.LT.WS) WS = WST 
IF (KF.EQ.3) GOT0 26 

WO = SQRT (Wl*W4) 
WP = W1/ (Wo*Wo-W1*W1) 
WS = W2/ (Wo*Wo-W2*W2) 
WST= ~3/(W3*W3-WO*WO) 
IF (WST.LT.WS) WS = WST 



26 PRINT *,'ENTER PASSBAND RIPPLE AND STOPBAND ATTENUATION IN + DB' 
READ *,Rl,R2 
GOT0 35 

C-------------BUTTERWORTH, CHEBYSHEV, AND ELLIPTIC FILTERS-- 
30 CALL ROOTSl 

GO TO 37 
35 CALL ROOTS2 

C---------HIGHPASS, BANDPASS, AND BAND REJECT XFORMS-------- 
37 IF (KF.EQ.1) GOT0 65 

CALL FREQXFM (WO, PR, PI) 
CALL FREQXFM (WO, ZR, Z I) 
IF (KF.EQ.2) GOT0 65 

N2 = N 
N = 2*N 
KOD = 0 

65 IF (KAD.EQ.l) GOT0 80 
C-------------DIGITAL BILINEAR XFORM------------------------ 

CALL BLT (N2, SR, PR,PI) 
CALL BLT (N2, SR, ZR, ZI) 
PRINT *,'Z PLANE' 

CALL PRNT (N2, PR,PI, ZR,ZI) 
C-------------CASCADE STRUCTURE AND FREQUENCY RESPONSE------ 
80 CALL CASCAD(PR,PI, ZR,ZIrB1,B2,A1,A2,G) 

IF (KAD.EQ.2) CALL DFR(KKtB1,B2,A1,A2,FM,G) 
IF (KAD.EO.1) CALL AFR 

. . .  
GOTO 10 
END 

C-------------END OF MAIN PROGRAM------------------------- 

C-------------BW, CHEBY IhII POLE & ZERO LOCATIONS-------- 
SUBROUTINE ROOTSl 
DIMENSION PR(20) ,PI(20) ,ZR(20) ,ZI (20) 
COMMON /pARM/Rl, R2, WP, WS,N2,N, SR, KA, KAD, KOD, KF 
COMMON /ROOT/PR,PI,ZR,ZI 
ARCSNH (X) = ALGG (X+SQRT (X*X+l) ) 

L = O  
N2 = (N+1)/2 
KOD = 1 
IF (MOD(N,2) .EQ.O) KOD = 0 
IF (KOD.EQ.0) L = 1 

SM = 1.0 
CM = 1.0 

IF (KA.EQ.1) GO TO 10 
VO = ARCSNH (1/E) /N 
SM = SINH(V0) 
CM = COSH (VO) 

10 DO 15 J = 1, N2 
ARG = 1.570796326794897*L/N 
TR = -SM*CGS (ARG) 
TI = CM*SIN(ARG) 
ZR(J) = 0.0 
ZI(J) = 1E25 
IF (KA.EQ.3) GOT0 11 

PR(J) = W*TR 

15 CONTINUE 
RETURN 
END 



C-----------ELLIPTIC FILTER POLE & ZERO LOCATIONS------ 
SUBROUTINE ROOTS2 
REAL K, KC, KK, KKC, K1, KlC, KK1, KKlC 
DIMENSION PRI20) .PII2O) .ZR(20) ,ZI(20) . . ,  . . 
COMMON /ROOT~PR:PI.ZR.ZI 
COMMON /PARM/R~; ~ 2 ;  WP;WS,N~,N,SR,KA,KAD,KOD,KF 
COMMON /ELP~/SN,CN,DN 

C 
E = SQRT(lO.O**(O.l*Rl)-1) 

K = WP/WS 
KC = SQRT (1-K*K) 
K1 = E/SQRT(lO.** (O.l*R2) -1) 
K1C = SQRT (1-Kl*Kl) 
KK = CEI (KC) 
KKC = CEI (K) 
KK1 = CEI (KlC) 
KKlC= CEI (Kl) 
XN = KK*KKIC/KKI/KKC 
N = INT(XN + 1.0) 

PRINT *,IN= ',N 
KI = FK(N*KKC/KK) 
K1C = SQRT (1-Kl*Kl) 
KK1 = CEI (KlC) 

L = o  
N2 = (N+l) /2 
KOD = 1 

IF(MOD(N,2) .EQ.O) KOD = 0 
IF(KOD.EQ.0) L = 1 

vo = (KK/KKI/N) *ARCSC (I/E,KI) 
CALL ELP (VO. KI . . .  
SM = SN 
CM = CN 
DM = DN 
ZI(1) = 1E25 
DO 15 J = 1, N2 

ARG = KK*L/N 
CALL ELP (ARG, KC) 
ZR(J) = 0.0 
IF (L.NE.0) ZI(J) = WS/SN 
PR(J) = -hT*SM*CM*CN*DN/ (1- ( (DN*SM) **2.O) ) 
PI (J) = ~T*DM*SN/ (I-( (DN*SM) **2.0) ) 
L = L + 2  

15 CONTINUE 
RETURN 
END 

C----------PREWARP OF FREQS BEFORE BLT-------------------- 
FUNCTION PREWRP (WW) 
COMMON /PARM/Rl,R2,WP,WS,N2,N,sR,KA,KAD,KOD,KF 

IF (KAD.EQ.l) PREWRP = WW 
IF (KAD.NE. 1) PREWRP = 2 .O*SR*TAN (WW/2.0/SR) 

RETURN 
END 

C----------DIGITAL BILINEAR TRANSFORMATION---------------- 
SUBROUTINE BLT (N2, SR, R, I) 
REAL SR, R(l), I(1) - 

TI = I (J) 
IF (ABS (TI) .GT.lE15) GOT0 10 
IF (ABS (TR) .GT.lE15) GOT0 10 

TD = (A - TR) **2 + TI*TI 



R(J) = -1.0 
I(J) = 0.0 

CONTINUE 
RETURN 
END 
--------FREQUENCY TwSFORM&TION-------------------- 
SUBROUTINE FREQXFM (WO, PRr PI) 
REAL PR(l), PI(1) 
COMPLEX PC, SC 
COMMON /PARM/Rl,R2, WPrWSrN2, Nr SR, KAr KADr KODI KF 

NT = 2*N2+1 
IF (KF.GE.3) GOTO 12 
DO 10 J=1, N2 

IF (PI(J) .GT.lE15) GOT0 7 
PC = CMPLX (PR(J), PI(J)) 
sc = l.O/PC 
PR(J) = -ABS (REAL(SC) ) 
PI (J) = ABS (AIMAG (SC) ) 
GOT0 10 
PR(J) = 0.0 
PI(J) = 0.0 

CONTINUE 
RETURN 
DO 14 J=1, N2 

IF (PI (J) .GT. 1E15) GOT0 13 
PC - CMPLX (PR(J), PI(J)) 

IF (KF.EQ.4) PC = l.O/PC 
SC = (PC - CSQRT (PC*PC-4*WO*WO) ) /2.0 
PR(J) = -ABS (REAL(SC) ) 
PI(J) = ABS (AIMAG(SC) 
SC = (PC + CSQRT (PCfPC-4*WOfWO) ) /2.0 
PR (NT-J) = -ABS (REAL (SC) ) 
PI(NT-J) = ABS(AIMAG(SC)) 
GOT0 14 
PR(J) = 0.0 
PR(NT-J) = 0.0 
PI(J) = 1E17 
PI(NT-J) = 0.0 
IF (KF.EQ.4) PI(J) = WO 
IF (KF.EQ.4) PI(NT-J) = WO 

CONTINUE 
RETURN 
END 

C-----------COMPLETE ELLIPTIC INTEGRAL--------------- 
FUNCTION CEI (KC) 
REAL KC 

C 
A = 1.0 
B = KC 
DO 10 J = 1, 20 

AT = (A+B) /2 
B = SQRT (A*B) 
A = AT 
IF((A-B)/A .LT. 1.2E-7) GO TO 15 

10 CONTINUE 
PRINT *,ICE1 FAILED TO CONVERGE' 

15 CEI = 1.570796326794896/A 
RETURN 
END 

C-------------ELLIpTIC FUNCTIONS------------------ 
SUBROUTINE ELP (X, KC) 
REAL KC 
DIMENSION AA(16) ,BB(16) 
COMMON /ELPI/SN,CN,DN 



IF (X.EQ.0) GOT0 20 
1 = 1  
A = 1.0 
B = KC 

4 CONTINUE 
AA(1) = A  
BB(1) = B 
AT = (A+B)/2 
B = SQRT(A*B) 
A = AT 
IF(((A-B)/A) .LT. 1.3E-7) GO TO 15 
IF (I.GT.15) GOT0 10 
I = I + 1  

GOT0 4 
10 PRINT *,'ELP FAILED TO CONVERGE' 
15 C=A/TAN(X*A) 

16 CONTINUE 
E = C*C/A 
C = C*D 
A = AA(1) 
D = (E+BB (I) ) / (E+A) 
I = 1-1 

IF(I.NE.0) GO TO 16 
SN = l/SQRT(l+C*C) 
CN = SN*C 
DN = D 
RETURN 

20 SN = 0.0 
CN = 1.0 
DN = 1.0 

RETURN 
END 

c--------------- ARC ELLIPTIC TANGENT--------------- 
FUNCTION ARCSC (U,KC) 
REAL KC 
A = 1.0 
B = KC 
Y = l.O/U 
L = O  
DO 10 J = 1, 15 

BT = A*B 
A = A + B  
B = 2.0*SQRT (BT) 
Y = Y - B T / Y  
IF (Y.EQ.0) Y = SQRT(BT)*lE-10 

IF (ABS (A-B) .LT . (A*l. 2E-7) ) GOT0 15 
L = 2*L 
IF (Y.LT.0) L = L + 1 

10 CONTINUE 
PRINT *,'ARCSC FAILED TO CONVERGE' 
GOT0 16 

15 IF (Y.LT.0) L = L + 1 
16 ARCSC = (ATAN(A/Y) + 3.141592654*L)/A 

RETURN 
END 

C--------------MoDULUS FROM RATIO OF K/K'--------------- 
FUNCTION FK (U) 

C 



D = D*Q 
IF (C.LT. 1E-7) GOT0 15 

10 CONTINUE 
PRINT *,'FK FAILED TO CONVERGE' 

15 FK = 4*SQRT (Q) * (B/A) **2 
RETURN 
END 

SUBROUTINE PRNT(N2,PRnPI,ZR,ZI) 
DIMENSION PR(20) ,PI (20), ZR(20), ZI (20) 

PRINT *,' #, ZEROS (REAL, IMAG), POLES (REAL, IMAG)' 
DO 1 1=1,N2+1 

WRITE (*,lo) I,ZR(I) ,ZI(I) ,PR(I),PI(I) 
1 CONTINUE 
10 FORMAT (13,4F14.6) 

RETURN 
END 

C-----------CASCADE STRUCTURE PARPAMETERS-------------- 

SUBROUTINE CASCAD(PR,PI, ZR, ZI,B~,B~,A~, A2) 
DIMENSION PR(l),PI(l) ,ZR(l) ,ZI(l) 
DIMENSION ~l(20) ,B2 (20) ,~l(20) ,A2 (20) 
COMMON /PARM/Rl,RZ,WP,WSnN2,N,SR,KA,KRD,KOD,KF 

PRINT *, N2,' CASCADE STAGES, EACH OF THE FORM:' 
PRINT *,'F(z) = (z*z + Bl z + B2)/(z*z + A1 Z + A2)' 
K = O  
IF ((MOD(NZ,Z).NE.O).AND.(KF.EQ.3)) K = 1 
JO = 1 
IF (KOD.EQ.0) GOT0 10 

Bl(1) = 1.0 
IF (KF.EQ.2) Bl(1) = -1.0 
B2(1) = 0.0 
Al(1) = -PR(l) 
A2(1) = 0.0 
WRITE (*,30) JO, Bl(JO), BZ(JO), Al(JO), A2(JO) 
JO = 2 

DO 15 J = JO, N2 
Bl(J) = -2.0*ZR(J) 
B2(J) = ZR(J)*ZR(J) + ZI(J)*ZI(J) 
IF ( (J.EQ. 1) .AND. (K.EQ. 1) ) B1 (J) = 0.0 
IF ( (J.EQ.l) .AND. (K.EQ. 1) ) B2 (J) = -1.0 

A1 (J) = -2.0*PR(J) 
A2(J) = PR(J)*PR(J) + PI(J)*PI(J) 

IF (PI(J) .EQ.O) Al(1) = -PR(l)-PR(N2+1) 
IF (PI (J) .EQ.O) A2 (1) = PR(1) *PR(N2+1) 

WRITE (*,30) J, Bl(J), B2(J), Al(J), A2(J) 
CONTINUE 
RETURN 
FORMAT ( '  ' ,13,2F12.6, ' ' ,2F12.6) 
END 

--- ANALOG FILTER FREQ RESPONSE--------------------- 
SUBROUTINE AFR 
PRINT *,'ANALOG PART NOT FINISHED' 
RETURN 
END 



c-------------DIGITAL FILTER FREQ RESPONSE-------------------- 

SUBROUTINE DFR (KK, B1, B2, A1, A2, FM) 
DIMENSION Bl(1) ,B2(1) eAl(1) rA2(1) 
DIMENSION FM (1) 
COMMON /PARM/Rl,R2, WP, WS,N2, N, SRr KA, KADr KOD, KF 

C 
Q = 3.141592654/KK 
DO 20 J = 1, KK+l 

W = Q* (J-1) 
W2 = 2 .o*w 
BR = 1.0 
BI = 0.0 
AR = 1.0 
A1 = 0.0 
I0 = 1 
IF (KOD.EQ.O) GOTO 10; 

BR = COS(W) + Bl(1) 
BI = SIN(W) 
AR = COS(W) + Al(1) 
A1 = SIN(W) 
10 = 2 

10 DO 15 I = 10, N2 
BRT = COS (W2) + B1 (I) *COS (W) + B2 (1) 
BIT = SIN (W2) + B1 (I) *SIN (W) 
ART = COS(W2) + A ~ ( I )  *COS(W) + A2 (I) 
AIT = SIN(W2) + A1 (I) *SIN(W) 
BRS = BR*BRT - BI*BIT 
BI = BR*BIT + BI*BRT 
BR = BRS 
ARS = AR*ART - AI*AIT 
A1 = AR*AIT + AI*ART 
AR = ARS 

15 CONTINUE 
FM(J) = SQRT ((BR*BR + BI*BI) / (AR*AR + AI*AI) ) 

20 CONTINUE 
RETURN 
END 

C-----------OUTPUT FREQUENCY RESPONSE------------------ 

SUBROUTINE VIEW (KK, FM) 
DIMENSION FM(1) 

C 

OPEN (l,FILE='fmn) 
REWIND (1) 
FO = O.S/KK 
DO 10 J = 1, KK+1 

F = FO*(J-1) 
WRITE (1,100) F, FM(J) 

10 CONTINUE 
100 FORMAT(lOX,F15.8,E15.8) 

RETURN 
END 
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10. A FORTRAN PROGRAM FOR LOW-PASS FIR FILTER 
DESIGN USING A LEAST SQUARED 
EQUATION-ERROR CRITERION 

The FORTRAN program for designing digital IIR filters uses a discrete LS 
equation-error criterion. In the limit, where the number of specified frequency- 
response points is equal to the number of filter coefficients, the method becomes 
a frequency-sampling design technique. The basic theory, formulas, and variable 
names are chosen to follow the development in Section 7.4.2. 

The main program starts with a section that takes input specifications from 
the terminal. A subroutine calculates the frequency response of the finished filter 
design at a specified number of equally spaced points for display on the terminal 
and writes them into a file for further use. The number of frequency points to be 
evaluated is entered first. The transfer function is assumed to be of the form 

as in equation (7.116). The order of the numerator M and the order of the 
denominator N are entered next. Note that the number of unknown coefficients 
in the numerator is M + 1 and in the denominator is N. Then the number of 
frequency samples to be approximated is entered as L1 and the band edge as F P  
in Hertz. The minimum number of frequencies that will uniquely determine the 
M + N + 1 filter coefficients is M + N + 1. See Section 7.4.1. 

The next section sets the L1 desired frequency-response samples in two 
arrays, with C(J) being the samples of the real part and D(J) being the samples of 
the imaginary part. Note that the FORTRAN indices start at 1 rather than 0 as 
the equations do. The program assumes real filter coefficients. Therefore, the real 
part of the frequency response is even, and the imaginary part is odd. This fact, 
coupled with the fact that the frequency response of all digital filters is periodic, 
means that C(J) = C(L1 + 1 - J) and D(J) = - D(L1 + 1 - J). This also im- 
plies that, for all cases, D(l) = 0, and, for even L1, D(L1/2 + 1) = 0. The number 
of frequency samples is approximately L1/2, but because the samples are 
complex valued, the number of real values required is L1. For example, if 
L1 = 5, there will be three independent real-part samples to specify and two 
independent imaginary-part samples. For L1 = 4 there will be three independ- 
ent real-part samples and one imaginary-part sample. 

The next section of the program takes the IDFT of the frequency-sample 
vector as required in (7.120) and (7.121). The subroutine IDFT( ) takes into 
account that the coefficients are real and the frequencies have symmetries. 

The next two sections, in the DO 20 and D O  21 loops, form the H I ,  H z ,  and 
h,  matrices described in (7.124). They are labeled H1, H2, and HO in the 
program. Equation (7.125) or (7.128) is solved by the subroutines from the 
software package LINPACK.' If L1 = M + N + 1, it is a matrix inversion. If 
L l  > M + N + 1, a LS equation error is found, as in (7.130), by LINPACK. 
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Note that this does not give a LS error approximation to the desired frequency 
response, but a LS error solution of equation (7.127). 

In the next two sections the normalized A0 coefficient is appended to the 
A(J) vector, and the B(J) vector is calculated from (7.126). The actual design 
process is now complete. An analysis section follows, which calculates the 
frequency response from the filter coefficients in A and B by using subroutine 
DFR( ). The resulting K frequency-response values are written to the file fm by 
subroutine VIEW( ). 

This program is a straightforward implementation of the theory in Sections 
7.4.1 and 7.4.2. The input and output are primitive and need to be customized by 
the user. The various modifications described in 7.4.2 can easily be added. Recall 
that this procedure does not minimize the usual solution error described in 
(7.1 32) or (7.133). It minimizes the squared equation error defined in (7.128). One 
of the powerful features of this approach is the approximation of a complex 
desired frequency response. Experience shows that very surprising results are 
often obtained if the desired frequency response is not close to what an IIR filter 
of the specified order can achieve. The inclusion of phase specifications is a 
significant complication compared to magnitude-only approximations. A root- 
finder subroutine could be added to factor the numerator and denominator of 
H(z), and the cascade structure section from Program 8 could easily be added. 

A program to implement Prony's method for time-domain design of IIR 
filters, as described in Section 7.5, could easily be written by modifying this 
program. The formation of the basic matrices in (7.138) and their solution in 
(7.139) and (7.140) are the same as done here. The input section would have to be 
changed and the IDFT would have to be removed. 

................................................... 
A FREQUENCY-SAMPLING AND DISCRETE 
LEAST-SQUARED-EQUATION-ERROR IIR FILTER DESIGN 
PROGRAM. REQUIRES LINPACK. 
NUMERATOR ORDER: M; M+1 COEFFS: B (K) 
DENOMINATOR ORDER: N; N+1 COEFFS: A(K) , A(1) =1 
NUMBER OF FREQ SAMPLES: L+1 
FREQ SAMPLE METHOD: L = M + N 
DISCRETE LEAST SQR: L > M + N 

C.S. BURRUS, RICE UNIV., FEB 1986 

REAL ~ ( 5 0 )  ,B(50) ,C(501) tD(501) tH(501) rH0 (501) tQAX(50) 
REAL FM(530) 
REAL ~1(50,50), H2 (501,50) 

L 

LDX = 501 
PRINT *,'FS AND LS DESIGN OF AN IIR FILTER' 
PRINT *,'ENTER NUMBER OF FREQUENCIES TO BE EVALUATED' 
READ *. KK 

1 PRINT ;, ENTER NUMERATOR ORDER, DENOMINATOR ORDER' 
READ *, M, N 
PRINT *,'ENTER THE NUMBER OF FREQ SAMPLES TO OPTIMIZE OVER' 
READ *, L1 



L = L1- 1 
L M = L - M  
M l = M + l  
N l = N + l  
ML = (L1+1) /2 

C---------------SET THE DESIRED FREQUENCY RESPONSE---- 
PRINT *,'ENTER THE ',ML,' REAL PART SAMPLES' 
READ *, (C(J) , J=l,ML) 
PRINT *,'ENTER THE ',ML,' IMAG PART SAMPLES' 
READ *, (D(J) , J=l,ML) 

C---------------TAKE THE INVERSE DFT------------------ 

CALL IDFT (Ll, C, D, H) 
C---------------FOm THE MATRIX-------------------- 

DO 20 J = 1, M1 
I = J  
DO 10 K = 1, N1 

IF (I.LT.l) I = L1 
Hl(J,K) = H(1) 
I = I - 1  

10 CONTINUE 
20 CONTINUE 

C----------------FORM THE H2 AND HO MATRICES---------- 

I0 = M1 
DO 21 J = 1, LM 

HO (J) = -H (IO+1) 
I = I0 
DO 11 K = 1, N 

IF (I.LT.l) I = L1 
HZ (J,K) = H (I) 
T = T - 1  - - -  

11 CONTINUE 
I0 = I0 + 1 

C---------------LEAST SQUARES SOLUTION FROM LINPAC---- 
CALL SQRDC (H2, LDX, LM,N,QAX,DUM,DUM, 0) 
CALL SQRSL (H2, LDX,LM,N,QAX,HO,DUM,HO,A,DUM,DUM, 100, INFO) 

C---------------ADD THE UNITY TERM TO A--------------- 

DO 25 J = 1, N 
A (N+2-J) = A (N+1-J) 

25 CONTINUE 
A(1) = 1.0 

C---------------CALCULATE THE NUMERATOR COEFFS-------- 
DO 40 J = 1, M1 

BT = 0.0 
DO 30 K = 1, N1 

BT = BT + Hl(J,K) *A(K) 
30 CONTINUE 

B(J) = BT 
40 CONTINUE 

C-------------OUTPUT COEFFS AND FREQ RESPONSE--------- 
PRINT *,'NUMERATOR COEFFS ARE:' 
PRINT *, (B(J) ,J=l,Ml) 
PRINT *,'DENOMINATOR COEFFS ARE:' 
PRINT *, (A(J) , J=1, N1) 
CALL DFR (N, M, KK, A, B, EM) 
CALL VIEW (KK, FM) 
GOT0 1 
END 
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C 
SUBROUTINE DFR(NtMr KKr A, Br FM) 
REAL A(1)n B(1)t FM(1) 
Q = 3.141592654/KK 
DO 20 J = 1, KK+1 

BR = B(M+l) 
BI = 0.0 
QQ = Q* (J-1) 
DO 10 I = 1, M 

BR = BR + B(M+l-I) *COS(QQ*I) 
BI = BI + B(M+l-I) *SIN(QQ*I) 

CONTINUE 

15 CONTINUE 
FM(J) = SQRT( (BR*BR + BI*BI)/(AR*AR + AI*AI)) 

20 CONTINUE 
RETURN 
END 

c----------------------------------------------------- 
SUBROUTINE IDFT(N,C,D,H) 
REAL C(l), D(1)r H(1) 

C 
Q = 6.283185307179586/N 
M = (N+l) /2 
DO 20 J = 1, N 

HT = 0.0 
DO 10 K = 2, M 

QQ = Q* (J-1) * (K-1) 
HT = HT + C (K) *COS (QQ) - D (K) *SIN(QQ) 

10 CONTINUE 
HT = C(1) + 2*HT 
IF (MOD(N,2) .EQ.O) HT = HT + C(M+l) *COS(3.141592654*(J-1)) 
H (J) = HT/N 

20 CONTINUE 
RETURN 
END 

c----------------------------------------------------- 
SUBROUTINE VIEW (KK, FM) 
DIMENSION FM(1) 
OPEN (1, FILE=' fm' ) 
REWIND (1) 
DO 10 J = 1, KK 

F = 0.5*(J-1)/KK 
WRITE (1,100) F,FM(J) 

10 CONTINUE 
100 FORMAT (10X,F15.8,E15.8) 

RETURN 
END 

11 -13. TMS32010 ASSEMBLY LANGUAGE 
PROGRAMS 

This section contains three assembly language programs for the TMS32010. 
Program FIR21 implements the length-21 FIR filter described in the design 
example in Chapter 5. It is written to be run on the Texas Instruments (TI) EVM 
evaluation module board in conjunction with the TI AIB analog interface 
board. For details on calculation and scaling of the coefficients, see Chapter 5. 
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The second and third programs are implementations of the fourth-order 
elliptic filter described in the design example in Chapter 8. These programs are 
written to be run on the simulator provided by TI for the TI or IBM PC. A few 
additional instructions are required to run these programs on the EVM/AIB 
boards. 

The second program uses the transpose structure for each of the cascaded 
second-order blocks, and the third program uses the direct structure for each of 
the cascaded second-order blocks. We were careful to avoid overflow limit 
cycles, by using the overflow mode of arithmetic. This required that the output 
be scaled up at the end of the programs with the APAC instruction, because 
of the implementation of overflow detection on the TMS32010. If the same 
filter were implemented on the TMS32020, these extra instructions would 
not be necessary. For details on calculation and scaling of the coefficients, see 
Chapter 8. 

IDT ' ~ 1 ~ 2 1 '  

. . . . . . . . . . . . . . . . . . . . . . . . .  
* NAME DATA LOCATIONS * 
. . . . . . . . . . . . . . . . . . . . . . . . .  

CLCK EQU 0  
MODE 
MASK 
SIGN 
CONV 
ONE 
YN 
X 1  
X 2  
X  3  
X  4 
X  5 
X 6  
X 7  
X  8  
X 9  
X I 0  
X I 1  
X 1 2  
X 1 3  
X 1 4  
X 1 5  
X 1 6  
X I 7  
X 1 8  
X 1 9  
X 2  0  
X 2  1 
H  1 
H 2  
H 3  
H  4 
H 5  
H  6 
H 7  
H 8  
H  9  
H I 0  
H 1 1  

EQU 
EQU 
EOU 

E ~ U  
EQU 

EQU 
EQU 
EQU 
EOU 
E ~ U  
EQU 
EQU 

EQU 
EQU 
EOU 
E ~ U  
EOU 

EQU 
EQU 
EQU 
EOU 



. . . . . . . . . . . . . . . . . . . . . .  
* START OF PROGRAM * 
. . . . . . . . . . . . . . . . . . . . . .  
* 

AORG 0 
B START 

* 
* * *  SETDATA * * *  * 
DCLCK DATA >200 
DMODE DATA >8 
DMASK DATA >FFFO 
DSIGN DATA >a000 
DCONV DATA >do00 
DONE DATA >1 
DH1 DATA >OllD 

DATA >035D 
DATA >FD82 
DATA >00E9 
DATA >OlAE 

DATA >FC62 
DATA >02BC 
DATA >01F2 
DATA >F60F 
DATA >OF= 
DATA >2AAF * 

. . . . . . . . . . . . . . . . . . . . . . . . .  
* INITIALIZATION CODE * 
. . . . . . . . . . . . . . . . . . . . . . . . .  
* 
START LDPK 0 

sow 
DINT 
LACK DCLCK 
TBLR CLCK 
LACK DMODE 
TBLR MODE 
LACK DMASK 
TBLR MASK 
LACK DS IGN 
TBLR SIGN 
LACK DCONV 
TBLR CONV 
LACK DONE 
TBLR ONE 

LACK DH1 
TBLR H1 
ADD ONE 
TBLR H2 
ADD ONE 
TBLR H3 
ADD ONE 
TBLR H4 
ADD ONE 
TBLR H5 
ADD ONE 
TBLR 
ADD 
TBLR 
ADD 
TBLR 
ADD 
TBLR 
ADD 
TBLR 
ADD 
TBLR 

H 6 
ONE 
H7 
ONE 
H8 
ONE 
H9 
ONE 
HI0 
ONE 
HI1 

BRANCH AROUND DATA 

PROGRAM PARAMETERS 

FILTER COEFFICIENT 

SET DATA PAGE POINTER 

READ IN PROGRAM PARAMETERS 

READ IN FILTER COEFFICIENTS 

" 



. . . . . . . . . . . . . . . . . . . .  
* INITIALIZE AIB * 
. . . . . . . . . . . . . . . . . . . .  
* 

OUT CLCK, PA1 
OUT MODE, PA0 * 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
* WAIT FOR NEXT SAMPLE * . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
FILT BIOZ GET 

B FILT 
* 
. . . . . . . . . . . . . . . . . . . . . . . . . .  
+ IMPLEMENT THE FILTER * 

SET SAMPLING RATE 
SET A19 MODE 

BRANCH ON NEW SAMPLE 

COMPUTE NEXT OUTPUT 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
GET IN X1, PA2 READ IN SAMPLE 

LAC X1 CONVERT SAMPLE TO TWO'S COMPLEMENT 
XOR MASK 
AND MASK 
ADDS SIGN 
SACL X1 * 
ZAC 
LT X2 1 
MPY H1 
LTD X2 0 
MPY H2 
LTD X19 
MPY H3 
LTD X18 
MPY H4 
LTD X17 
MPY H5 
LTD X16 
MPY H 6 
LTD X15 
MPY H7 
LTD X14 
MPY H 8 
LTD X13 
MPY H 9 
LTD X12 
MPY H10 
LTD X11 
MPY HI1 
LTD XI0 
MPY HI0 
LTD X9 
MPY H9 
LTD X8 
MP Y H8 
LTD X7 
MPY H 7 
LTD X6 
MPY H6 
LTD X5 . . . 
MPY H 5 
LTD X4 
MPY H 4 
LTD X3 
MPY H 3 
LTD X2 
MPY H2 
LTD X1 
MPY H 1 



ADD C O W ,  15 CONVERT TO BINARY FORMAT 
SACH YN,1 
OUT YN,PA2 OUTPUT Y (N) 
B FILT WAIT FOR NEXT SAMPLE 
END . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PROGRAM 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 

* FOURTH ORDER ELLIPTIC LOWPASS FILTER, TWO CASCADED 
BIQUAD SECTIONS (TRANSPOSE STURCTURE). FILTER * 
COEFFICIENTS OF EACH SECOND-ORDER SECTION ARE 
SCALED BY THE LARGEST L1 N O W  

* OF THE IMPULSE RESPONSE OF EACH SUMMING NODE, THUS 
GUARANTEEING NO OVERFLOW. THE FILTER OUTPUT IS 
SCALED UP TO IMPLEMENT AN OVERALL GAIN OF ONE, AND 
THUS THERE IS A POSSIBILITY OF OVERFLOW THERE. THE 
UNSCALED REPRESENTATION OF THE OUTPUT (BEFORE THE * 
MULTIPLICATION BY HO) MRY BE USED TO GUARANTEE NO * 

* OVERFLOW AT THE FILTER OUTPUT AS WELL. * 
* 

* THE NOTATION (Q15*2) INDICATES THAT THE COEFFICIENT * 
IN THE PROGRAM IS TWICE THE HEX EQUIVALENT OF THE * 
DECIMAL NUMBER. * 
IN THIS PROGRAM, THE SECOND INDEX OF COEFFICIENTS * 
AND VARIABLES INDICATES THE SECTION THE COEFFICIENT * 
(VARIABLE) BELONGS T0,EG. A21 IS THE COEFFICIENT OF 

* Z**-2 FOR THE FIRST STAGE. IN CHAPTER 8, THE 
* OPPOSITE CONVENTION IS USED,I.E., a12 IS 
* THE COEFFICIENT OF Z**-2 IN THE TEXT. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

XN EQU 0 
YN1 EQU 1 
Y21 EQU 2 
Y11 EQU 3 
YN2 EQU 4 
Y22 EQU 5 
Y12 EQU 6 
A1 1 EQU 7 
A21 EQU 8 
B01 EQU 9 
B11 EQU 10 
B2 1 EQU 11 
A12 EQU 12 
A2 2 EQU 13 
B02 EQU 14 
B12 EQU 15 
B22 EQU 16 
HO EQU 17 
ONE EQU 18 

AORG 0 
RSLOC B INIT 



DATA >6730  - A l l  = 0 . 4 0 3 0 7 0 3  (Q15  * 2 )  
DATA >C449 -A21 = -0 .2332662  (Q15  * 2 )  
DATA >303C BO.1 = 0 . 1 8 8 4 1 3 3  (Q15  * 2 )  
DATA >4E3A B11 = 0 .3055656  (Q15 * 2 )  
DATA >303C B21 = 0 . 1 8 8 4 1 3 3  (Q15 2 )  

DATA >F2D6 -A12 = - 0 . 0 5 1 4 2 1 4  (Q15  * 2 )  
DATA >99F3  -A22 = - 0 . 7 9 7 2 8 6 1  (Q15)  
DATA >59A9 B02 = 0 . 3 5 0 2 2 9 1  (Q15  * 2 )  
DATA >4030  B12 = 0 . 2 5 0 7 2 7 4  (Q15  * 2 )  
DATA >59A9 B22 = 0 . 3 5 0 2 2 9 1  (Q15  * 2 )  

DATA 

WONE 
* 
I N I T  

DATA 

LDPK 
SOVM 
LARK 
LARK 
LACK 
LARP 
TBLR 
SUB 
BAN2 

ARO, ONE 
A R 1 , l l  
WONE 
ARO 
*-,AR1 
ONE 
TABLER 

T ABLER 

* 
ZFILT ZAC 

SACL 
SACL 
SACL 
SACL 

IIRZTS 
LPSECl 

IN 
LT 
MPY 
ZALH 
APAC 
SACH 
MPY 
ZALH 
LTA 
MPY 
APAC 
SACH 
MPY 
PAC 
LT 
MPY 
APAC 
SACH 

LT 
MPY 



ZALH Y22 
APAC 
SACH YN2 
MPY 812 
ZALH Y12 
LTA YN2 
MPY A12 
APAC 
SACH Y22 
MPY A22 
PAC 

APAC 
LT YN1 
MPY B22 
APAC 
SACH Y12 

LT YN2 
MPY HO 
PAC 
APAC 
APAC 
APAC 
APAC 
APAC 
AP AC 
APAC 
SACH YN2 

* 
OUT YN2,PAI 
B IIRZTS 

* 
END 

* 

MAKE A22 Q15*2 
Q15 
Q15*2 

SCALE YN BACK UP -- NOTE THAT 
OVERFLOW (SATURATION) MAY OCCUR 
HERE IF OUTPUT MAGNITUDE EXCEEDS 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PROGRAM 13 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 
FOURTH ORDER ELLIPTIC LOWPASS FILTER, TWO CASCADED * 
BIQUAD (DIRECT FORM 2 STRUCTURE) SECTIONS. FILTER * 
COEFFICIENTS OF EACH SECOND-ORDER SECTION SCALED BY * 
THE LARGEST L1 NORM OF THE IMPULSE RESPONSE OF EACH * 
SUMMING NODE, THUS SUMMING NODE, THUS GUARANTEEING * 
NO OVERFLOW. THE FILTER OUTPUT IS SCALED UP TO * 
IMPLEMENT AN OVERALL GAIN OF ONE, AND THUS THERE IS * 
A POSSIBILITY OF OVERFLOW THERE. THE UNSCALED * 
REPRESENTATION OF THE OUTPUT (BEFORE THE * 
MULTIPLICATION BYHO) MAY BE USED TO GUARANTEE NO * 
OVERFLOW AT THE FILTER OUTPUT AS WELL. * 

* 
* THE NOTATION (Q15*2) INDICATES THAT THE COEFFICIENT * 
* IN THE PROGRAM IS TWICE THE HEX EQUIVALENT OF THE * 
* DECIMAL NUMBER. * 
* * 
* IN THIS PROGRAM, THE SECOND INDEX OF COEFFICIENTS * 
* AND VARIABLES INDICATES THE SECTION THE COEFFICIENT * 
* (VARIABLE) BELONGS T0,EG. A21 IS THE COEFFICIENT OF * . 



* Z**-2 FOR THE FIRST STAGE. IN CHAPTER 8,  THE * 
* OPPOSITE CONVENTION IS USED,I.E., a 1 2  IS * 
* THE COEFFICIENT OF Z**-2 IN THE TEXT. * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
XN EQU 0  
YN1 EQU 1 
YO1 EQU 2  
Y11 EQU 3  
Y21 EQU 4  
YN2 EQU 5 
YO2 EQU 6  
Y12 EQU 7  
Y22 EQU 8  
SCLFAC EQU 9  
A l l  EQU 1 0  
A21 EQU 11 
B01 EQU 1 2  
B l l  EQU 1 3  
B21 EQU 1 4  
A12 EQU 15 
A22 EQU 1 6  
B02 EQU 1 7  
8 1 2  EQU 1 8  
8 2 2  EQU 1 9  
HO EQU 2 0  
ONE EQU 2 1  
* 

AORG 0  
RSLOC B INIT 
* 

DATA >5D19 SCLFAC = 0 . 3 6 3 6 6 3 6  

* 
DATA >6730  - A l l  = 0 . 4 0 3 0 7 0 3  
DATA >C449 -A21 = -0 .2332662  
DATA > I 4 1 1  B01 = 0 . 0 7 8 3 8 4 3  
DATA >208B B11 = 0 . 1 2 7 1 2 2 4  
DATA > I 4 1 1  B21 = 0 . 0 7 8 3 8 4 3  

DATA 
DATA 
DATA 
DATA 
DATA 

* 
DATA 

* 
WONE DATA 
* 
INIT LDPK 

S O W  
LARK 
LARK 
LACK 

TABLER LARP 
TBLR 
SUB 
BANZ 

ARO , ONE 
AR1,12 
WONE 
ARO 
*-,MI1 
ONE 
TABLER 



* 
Z F I L T  ZAC 

SACL 
SACL 
SACL 
SACL 
SACL 
SACL 

* 
I I R 2 D S  I N  

L T  
MPY 

L P S E C l  PAC 
LT 
MPY 
LTA 
MPY 
APAC 
SACH 
ZAC 
MPY 
LTD 
MPY 
LTD 
MPY 

* 
LPSEC2 LTA 

MPY 
LT A 
MPY 
APAC 
APAC 
SACH 
MPY 
PAC 
LTD 
MPY 
APAC 
LTD 
MPY 
APAC 
APAC 
SACH 

LT 
MPY 
PAC 
APAC 
APAC 
APAC 
APAC 
APAC 
APAC 
APAC 
APAC 
AP AC 
APAC 
APAC 
AP AC 

YO1 
Y 1 1  
Y 2 1  
YO2 
Y 1 2  
Y 2 2  

XN, PA0 
XN 
SCLFAC 

Y 1 1  
A 1  1 
Y2 1 
A2 1 

YO1 

B 2  1 
Y 1 1  
B 1 1  
YO1 
B 0  1 

Y 1 2  
A 1 2  
Y 2 2  
A2 2 

YO2 
B 2 2  

Y 1 2  
B 1 2  

YO2 
B 0 2  

YN2 

YN2 
HO 

MAKE A22 Q15*2  
Q 1 5  
Q 1 5  

MAKE B 2 2  Q15*2  

MAKE B 1 2  Q15*2  

MAKE B 0 2  Q15*2  

SCALE YN BACK UP -- NOTE THAT 
OVERFLOW (SATURATION) MAY OCCUR 
HERE I F  OUTPUT MAGNITUDE EXCEEDS 1 



APAC 
APAC 
APAC 
SACH YN2 Q15 

OUT YN2,PAl 
B IIR2DS 

END 





Index 

Alternation theorem, 87, 88 
Analog filters, 159 
Analog-tedigital (A/D) conversion, 134 
Analog-tedigital (AID) conversion noise, 136, 

137 
Approximation problem: 

FIR filters, 10, 11, 34 
IIR filters, 10, 11, 160 

Bandpass filters (FIR), 101-105 
Bandpass transformation, 202 
Bilinear transformation, 209, 322 
Butterworth filters, 106, 107, 162, 317 

Cascade form, 238, 325 
Chebyshev approximation, 83 
C hebyshev filters: 

IIR, 159, 171,179, 317 
type 2 FIR, 108 

Chebyshev FIR design: 
complex approximation, 120- 129 
linear phase approximation, 87, 88 
Remes exchange algorithm, 89-94 

Chebyshev IIR design, 177 
Chebyshev rational function, 190 
Coefficient quantization: 

FIR, 142 
IIR, 234-236,243,244 

Continuous systems, relation to discrete 
systems, 206 

Coupled form, 253 

D F T  (Discrete Fourier Transform), 20 
Differentiators, 286 
Direct form: 

nonrecursive, 140 
recursive, 236, 237 

Discrete-time systems, 4 

Elliptic filters, 184 

Filter comparisons, 269-272 
Finite impulse response (FIR), 4, 15 

design programs, 275-3 17 
design relations, 103 
structures, 140-142 

F IR  and IIR filters compared, 269-272 
Fixed point arithmetic, 133 
Frequency response, 7, 8, 26, 155 
Frequency sampling design, 35, 275, 327 
Frequency transformations 201, 206, 

323 
Frequency warping, 210 

Gibbs phenomenon, 59 
Group delay, 8, 124, 125 

Hamming window, 73 
Hanning window, 73 
Hilbert transformer, 24 
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IIR filter design techniques, 159, 225 
magnitudesquared function design, 16 1 
minimum mean squared error design, 221, 

224 
time domain design, 226 

IIR filters, 153 
Impulse invariant transformation, 206 
Impulse response, 5, 6 
Infmite impulse response (IIR) filters, 153 

Kaiser window, 73 

Limit cycle oscillations, 249-254 
Linear phase conditions, 20-26, 85, 86 
Linear programming: 

complex FIR design, 120 
design of IIR filters, 225 

Lowpass filters, 95-102, 161 

Magnitude-squared design, 1 12-1 20 
Magnitude-squared response, 1 12 
Maximally flat, 106, 162 
Maximal ripple filters, 105 
Minimum phase, 1 1 1, 1 12 
Multiple band filters, 103 

Nonrecursive realization, 140 

Overflow oscillations, 249-253 

ParksMcClellan algorithm, 89, 94-106 
Partial fraction expansion, 207, 239 
Phase delay, 8 
Pole-zero plot, 28, 156 
Prony's method, 226 

Rectangular window, 7 1 
Remez exchange algorithm, 89-94 
Rounding, 136 
Roundoff noise, 137 

Scaling: 
nonrecursive, 144, 145 
recursive, 244-246 

Squared- magnitude, see Magnitude-squared 
design 

Stability, 156 
Structures: 

nonrecursive, 140- 142 
recursive, 236-242 

Time-domain IIR design methods, 226 
Transfer function, 8 
Transition bands, 63-67, 70, 86 
Transpose structure, 141, 237 
Triangular window, 7 1 
Truncation, 136 
Two's-complement, 134, 135 

Parallel form, 239 
Window design, 71, 283 
Windows, 74 




